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The purpose of this article is to examine the process of developing services 
based on machine learning technologies in a manufacturing environment 
context. Over the past decade,  there has been a resurgence of interest in 
technology, with prominent technology business organisations and several 
start-ups incorporating it into their operations. The technology's widespread 
applications capacity for obtaining a competitive advantage, combined with 
the prospect of task automation for increased operational efficiency, renders 
it a significant resource for large corporations. Yet, the rate at which most of 
manufacturing firms are implementing Machine Learning services into their 
operations is very insignificant. Technical expertise has dominated study in 
this field, with minimal participation from other areas. Thus, the goal of this 
article is to identify the development benefits of Machine Learning services 
and to provide a process model for their deployment, based on service 
development and value theory.  
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A. Introduction 
Today’s modern manufacturing sector is going through a never-before-seen 

rise in data availability. These information come in a range of forms, 
interpretations, and quality levels, for example, sensors data from the production 
line, ecological data, and machine tool variables. This phenomena is referred to by 
a variety of terms, including Industrial Revolution 4.0 (Germany), Smart 
Manufacturing (United States of America), and Intelligent Factory (South Korea) 
[4-29]. Big Data is frequently used to refer to the growth and availability of 
enormous volumes of data. The accessibility of, for example, quality-related data 
enables the possibility of sustainably improving the quality of process and product.   
Nevertheless, it has been acknowledged that an abundance of information might 
offer a problem and might have a detrimental effect, as it can divert attention away 
from the primary concerns or result in delaying or incorrect judgments regarding 
suitable measures [7]. Generally speaking, the manufacturing sector should 
recognize that in order to take full advantage of steadily increasing data 
availability, such as for quality improvement programs, manufacturing estimated 
cost and/or performance improvement, and an improved knowledge of 
consumer's needs, etc., assistance is required to manage the high dimensional data, 
variability, and complexities involved. Latest advancements in some fields such as 
mathematics and computer science and the provision of simple-to-use, frequently 
free (software) instruments have the potential to significantly reshape the 
manufacturing field and their understanding over the growing manufacturing 
datasets. Among the most intriguing areas of research is Machine Learning (ML) 
[1]. Nevertheless, the area of ML is extremely varied, with several accessible 
algorithms, concepts, and approaches. This constitutes a hurdle to many 
manufacturing practitioners' use of these powerful technologies, and hence may 
impede their exploitation of the massive volumes of data that are becoming more 
available. From this backdrop, the present paper aimed at developing an 
integrated Machine Learning Model to elucidate why machine learning is a 
relevant and promising solution for the current's and future industrial issues [4]. 

 
 
B. Machine Learning 

Machine learning is defined as "the ability of computers to find solutions 
without being explicitly programmed to do otherwise". The implementation of 
machine learning techniques has grown exponentially in recent years as a result of 
the availability of huge volumes of data, advancements in digital technology, and 
the increased capability of accessible machine learning tools. Additionally, machine 
learning has been utilized in additive manufacturing for a variety of purposes, such 
as process optimisation, dimensional correctness measurement, manufacturing 
defect identification, and material property prediction. The purpose of this study is 
to offer an integrated ML to elucidate why machine learning is a relevant and 
promising solution for the current's and future industrial issues[16]. The approach 
is focused mostly on the integration of machine learning into the Operational 
Technology of manufacturing process in order to discover opportunities behind 
this concept. Due of the ease with which an ML-based output-input model can be 
created given input-output data, an integrated model based on machine learning 
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may accomplish reversed design without the need to develop complicated 
connection equations[20].Thus, even if data were created as structure-property 
connections, property-structure relationships may be directly represented. 
Additionally, if sufficient data is provided, machine learning-based models have 
almost no constraints on the complexity of the design issue. Additionally, the major 
benefit of machine learning over other surrogate modeling techniques is its 
capacity to model input-output connections in both directions, allowing for 
reversed design. The suggested machine learning-based integrated design 
technique can acquire the objective design directly from the property 
requirements, which is not possible with the typical surrogate model-based design 
process. It Should be noted that numerous studies have examined the application 
of machine learning in a variety of manufacturing enterprises. This section 
discusses several examples of intelligent machining systems that use machine 
learning, as indicated in Table 1. Because the underlying concepts of the various 
types of machine learning techniques are well-known, just the details of the 
machining operations are given. The most often researched aspect of traditional 
machining is its relationship to the usage of machine-learning techniques. The 
objectives differ wildly, going from operating parameters optimization to machine 
healthcare applications and product quality improvement. The most often 
researched traditional machining techniques were milling and turning. The next 
section presents some applications of ML algorithms in manufacturing industry. 

 
Table 1: Examples of machine learning-based machining operations 

Authors  Process  Purpose  Algorithms  Input parameters  

[33] Milling  Tool wear 

measurement  

artificial neural 
network; support 
vector machine  

 

Tool image  

[34] Milling Detection of tool 

failure 

, support vector 
machine; support 
vector regression  

 

Data on material 

removal rate and 

energy 

requirements 

[35] Milling Projection of tool 

failure 

random forest  

 

Vibrating, 

material 

removal rate, 

and acoustic 

radiation 

[36] Milling Estimation of 

electricity usage 

Gaussian process 
regression  

Velocity of the 

spinning, feed 

pace, cutting 

height, operative 

tool axis, and 
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cutting 

technique 

[37] Milling Forecast of tool 

failure rate and 

residual useful life 

support vector 
regression  

 

 

Motion, cutting 

depth, and 

acoustic 

emissions  

[38] Milling Forecast of 

electricity usage 

Gaussian process 
regression  

Spinning 

frequency, 

rotational speed, 

and cut motion 

of the active tool 

[39] Milling Diagnosis of tool 

failure 

probabilistic 
neural network  

 

 

Velocity of the 

spindles, flow 

rate, cutting 

width, 

maximum peak 

pressure, 

optimum 

variation 

packing pressure 

[40] Milling Optimizing the 

course of the tool, 

the tool 

classification, the cut 

settings, and 

assessment of 

 the recommended 

resolution. 

Non- dominated 
sorting genetic 
algorithm II  

 

 

Computer - 

aided design 

model 

[41] Milling Projection of 

material properties 

support vector 
machine  

 

Machining 

velocity, cutting 

height, and flow 

rate 

[42] Milling Estimation of chatter 

stabilization lobe 

support vector 
machine  

Vibration signal  
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[43] Milling Assessing the 

quality of tools 

J48 Decision Tree  

 

Vibration signals  

 

[44] Milling Measurement of the 

cutting parameters 

backpropagation 
neural network 
algorithm  

 

 

The substance, 

the trimming 

substance, the 

coatings, the 

dimension of the 

tool, the cutting 

force, the feed 

rate, and the 

depth of cut 

[45] Milling Estimation of 

deflections during 

machining 

procedures on thin-

walled workpieces 

Bayesian learning 
method  

 

Historical data 

on dislocation 

 
2.1 Artificial Neural Network (ANN)  
Actually, ANN evolved from biology, whereby the Neural Networks (NN) 

contributes significantly to the mankind brain. ANN is a type of smart computing 
approach inspired by biological neurons. It is a highly parallel computational 
network consisting of an enormous set of fundamental processing units connected 
via a huge number of linkages. Rather of adhering to a body of regulations 
established by experts, ANNs understand the fundamental policies through a series 
of relevant metaphoric circumstances [29]. They are composed of at least three 
tiers (an input nodes, many hidden nodes, and an output nodes).  Additionally, 
most of ANNs get their analytical activity from the relationships between their 
system unit operations. Owing to its ability to understand from experiences, ANN 
systems are usually used in a wide variety of disciplines of study[17]. Additionally, 
ANNs approaches outperform other standard machine learning techniques when 
dealing with binary code, fuzzy data, and non-linear data. ANNs are best suited for 
networks with a sophisticated, large-scale structure and unstructured data.  
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Figure 1: Basic structure of Artificial neural Network 
 

ANNs are extensively used and are the most often used machine learning 
techniques, but they have also been proposed for various industrial applications 
including soft sensors and anticipatory control mechanisms [4]. [29] used velocity 
data to train an ANN model to categorize the tool state of a Computer Numerical 
Control (CNC) milling machine. The suggested research took a retrofit strategy in 
order to assist older systems in transitioning to Industrial revolution 4.0. A 
programmed prototype system coupled with designed sensing devices was used to 
monitor wear rate. The research confirms that adapting older equipment is 
possible. The developed model's performance was compared to that of Support 
Vector Machine (SVM). [29] suggested a method for treating and converting 
vibration data collected from a vibration system that simulated a motor and 
creating a set of data and testing an Artificial neural network model able of 
forecasting the future status of the system, including when a failure may occur. The 
approach comprises categorizing the database and creating a mechanism for 
determining the oscillating system's probability of failure using frequencies and 
amplitude data. 

2.2 Bayesian Network  
Bayesian network is a popular machine learning approach for fault detection. 

Bayesian network is a directed acyclic network in which the nodes represent 
random variables and the directed arcs connecting the nodes indicating their 
conditioned dependence [30]. To model an issue employing Bayesian network, the 
network topology should be specified, and also the probabilities associated with 
every node. Several researchers suggested the use of a variety of techniques to 
generate tree topologies that illustrate the cause and effect connection between 
these nodes [31]. 
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Figure 2: Structure of Bayesian network 

 
[4] and [29] recommended the utilisation of failure mode and effect analysis 

(FMEA), [5] [6] proposed the use of fishbone diagrams (cause and effect diagrams), 
[5] proposed the use of fault-tree analysis and variation sensitivity matrix, and [7] 
proposed the use of finite element analysis Exact tree structure building for a 
Bayesian network using data is an NP-hard optimization issue [8].  [30] and [31] 
generated trees from data using the K2 [11] and [12] methods, respectively. [13] 
derive the cause-effect connection for the equipment being diagnosed from the 
maintenance handbook for the equipment. The network's conditional probabilities 
are then generated using process data collected from sensors and recorded in 
manufacturing execution systems (MES) or maintenance databases.  Bayesian 
network is used in a variety of manufacturing industries. [9] and [6] utilized a 
Bayesian network to analyze the effect of process variables on wafer quality in 
order to determine the underlying cause of faulty wafers using historical process 
data. Additionally, the car industry [7] uses Bayesian network to identify fixture 
faults in taillight assemblies, and machining [10] uses BN to diagnose surface 
roughness faults. Quality management systems (QMS), manufacturing execution 
systems (MES), recipe management systems (RMS), computerized maintenance 
management systems (CMMS), and coordinate measuring machines are all possible 
data sources (CMM). 

2.3. Support Vector Machine 
SVM employs a variety of kernel functions, such as the radial basis function 

(RBF) or the polynomial kernel, to choose the optimal higher dimensional space 
for classifying data, and performs well with small training dataset [23-30]. SVM has 
been successfully applied in a variety of fields, including facial recognition 
software, handwritten character recognition, voice recognition, image retrieval, 
and forecasting [22-24]. SVM is often used within flaw detection, albeit not as 
frequently as BN and ANN [25].  
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Figure 3: Structure of Support Vector Machine 
 

 [26-30] utilized the approach to identify gear failure during a face milling 
operation with changing cutting conditions. [27] developed a MapReduce 
programming model for automated diagnosis for cloud-based manufacturing 
employing SVM as the classification model and verified it with a study case of 
defect detection utilizing information from the UCI Machine Learning Repository 
on steel plate production [28]. [23] utilised SVM regarding classification of nine 
failure condition within a modular production system (MPS) utilizing data from 
eight sensing devices. He experimented with four distinct kernel functions, namely 
RBF, sigmoid, polynomial, and linear, and obtained a classification rate of 100 
percent for all but the sigmoid kernel that had a classification rate of 52.08 percent. 
The same dataset was also subjected to decision tree techniques created 
employing the QUEST (Quick, Unbiased, and Efficient Statistical Tree), C&RT 
(Classification and Regression Tree), and Classification algorithms of 100 percent 
and a Chi-square automatic interaction detection (CHAID) rate of 95.83 percent 
obtained [23]. SVM and decision tree algorithms, Demetgul found [23], are 
extremely excellent monitoring and test equipment for important manufacturing 
systems.  The SVM approach is effective for modeling both linear and non-linear 
relations. When compared to other non-parametric algorithms, such as ANN, the 
computation time is quite short. While the access to an important training 
database is a barrier within machine learning, SVMs often perform well with 
sparse training data. Additionally, NIST is currently building use cases for typical 
industrial processes to aid in prognosis and health management research [29]. 

2.4 Hidden Markov Model 
The Hidden Markov System is a variant of the Markov chain process that is 

employed to determine the probabilities distributions of state transitions and 
quantification of the results within a complex process in the presence of non - 
observable variables [30]. The HMM technique was employed to diagnose faults in 
both continuous and discrete production processes. [30-31] developed a novel 
multi-way discrete hidden Markov model (MDHMM) for FD and categorization in 
dynamic batching or semi-batch manufacturing techniques including inherent 
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system uncertainties within the continual case. [29-31] used the suggested 
MDHMM method to classify various types of process defects with great accuracy in 
a fed-batch penicillin fermentation process. [32] used HMM to detect and diagnose 
instrument durability and ball bearings problems in the discrete instance. The 
algorithm accurately identified the device's status (i.e., sharp, worn, or broken) and 
the severity of the defect seeded in two distinct engine bearings [32]. Along with 
the severity rating, a localization index was developed to indicate the position of 
the fault (inside race, ball, or outside race) [32].  

As with the analogue sensor system employed in conjunction with ANNs, [6-
30] employed HMMs in conjunction with sophisticated signal processing 
techniques to determine the cause of a ball bearing defect. The algorithm was 
based on Swarm Rapid Centroid Estimation (SRCE) and HMM, and the defect 
frequency signatures were extracted using Wavelet Kurtosis and Cepstral Liftering 
to achieve an average sensitivity, specificity, and error rate of 98.02 percent, 96.03 
percent, and 2.65 percent, respectively, on bearing fault vibration data provided by 
Case School of Engineering, Case Western Reinsurance Company. HMM is a 
probabilistic model that excels in modeling processes with unobservable states, 
such as chemical processes or the health status of equipment, making it a great fit 
for FD. However, training is often a computationally demanding procedure [21]. 

 
 
C. Contemporary Patterns Regarding Development on Machine Learning  

Machine-learning scientific study is making major strides in a variety of 
domains. Hence,  the present  section addresses two of the most significant trends 
and certain relevant issues. Ramping up machine-learning techniques and learning 
numerous models are the two major ways. 

1.  Extending the reach of machine-learning techniques 
Massive quantities of data are gathered in information management system 

and information repositories in contemporary manufacturing settings from fields 
such as process optimisation, product development, production planning and 
control, and maintenance. The first important field of research involves strategies 
for ramping up machine-learning techniques ensuring how they could efficiently 
analyze a huge data sets whilst generating the best potential models from them. 
The rapid surge of big data as a significant application of machine-learning 
techniques highlights the importance of algorithms being capable of handling huge 
information sources that are now further than their capability. Dataset contains 
containing billions of training samples, dozens of variables, and thousands of 
categories are typical within data mining applications. [8] identified numerous 
sample datasets comprising hundreds of terabytes of information. Developing 
learning techniques that are suitable for these kind of applications is therefore 
becoming a prominent research area.  

Numerous techniques to ramping up machine-learning algorithms were 
proposed and applied [29–30]. The simplest solution is to create more 
optimization techniques or to increasing the effectiveness of current algorithms. 
This method encompasses a broad range of algorithm design strategies for 
improving the research and encoding, for obtaining approximation rather than 
precise results, and for using the task's constant process. A second option is to split 
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the information, which avoids the requirement for algorithms to be performed on 
extremely big datasets. This strategy entails segmenting the information number 
of clusters, learning from several of the groupings, and integrating the findings. 
Information segmentation is advantageous because it helps prevent issues related 
to managing memory, which arise when algorithms attempt to analyze large data 
sets within the main memory [13]. An method that is complementary to the choice 
of case groupings is to concentrate on subgroups of important characteristics.  

To offer context and specific detail, the deployment of inductive learning 
approaches to quite huge datasets is now explored; the challenges and solutions 
mentioned apply to other forms of machine learning as well. Numerous 
improvements have been made to the decision-tree procedures to enable them to 
manage large volumes of data effectively, and numerous new methods have been 
suggested. Catlett offered two approaches for reducing the time required to create 
a classifiers [9-10]. The very first technique collected information at every decision 
tree point, whereas the second approach fuzzified continuum features. Such 
techniques greatly reduce classification time and moreover diminish classification 
accuracy. Additionally, Catlett evaluated only sets of data which could be stored 
within primary computer memory. [28–32] discusses methods for dividing the 
data stream in such a way that each portion resides within main memory. While 
these approaches allow categorization of huge datasets, their research indicates 
that the resultant decision tree is of lower quality than a classifier created utilizing 
the entire data set at once. Additionally, incremental-learning approaches have 
been investigated [11], in which data is categorized into batches. The accumulated 
costs of gradually categorizing data, on the other hand, can occasionally outweigh 
the cost of classifying the whole training set once.  

The decision-tree classifier in [12], dubbed SLIQ, included innovative 
approaches such as pre-sorting, broadness development, and MDL-based trimming 
to reduce the classifier's learning time without compromising the performance. 
Simultaneously, these approaches enabled classification on massive quantities of 
disk-resident training data. Yet, because the SLIQ uses a recollection database 
schema, which increases with the classes in the training set, the maximum number 
of instances that could be analyzed is limited. [14] proposed SPRINT, a 
classification method that eliminates all memory constraints associated with the 
conventional decision-tree algorithms while exhibiting the same outstanding 
performance as SLIQ. SPRINT effectively classifies data sets of almost any size; 
moreover, the technique may be readily executed in parallel. SPRINT, on the other 
hand, has been questioned for a myriad of causes. For instance, it makes use of 
database systems termed characteristic listings that may be expensive to build and 
maintain, potentially resulting in a doubling of the data set's size and a 
corresponding substantial rise of scanning expense [15]. SLIQ and SPRINT, like 
C4.5, are two techniques that involve phases of construction and trimming. 
Producing the decision tree within two different stages may lead to significant 
work being squandered, because a whole subset of features created during the first 
stage might well be trimmed within the subsequent stage. PUBLIC [16] is a 
decision-tree classifier that strongly couples the trimming and constructing stages 
rather than doing them sequentially. Its tree-increasing phase is identical to 
SPRINT's, excepting that entropy is used instead of the Gini index. When a leaf 
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node is created, however, PUBLIC can instantly determine if additional splitting is 
necessary by calculating the cost of coding the subtree rooted at this leaf node. 
PUBLIC's comprehensive approach can result in significant performance gains 
over conventional classifiers like as SPRINT.  

 [30] recently introduced Rain-forest, a framework for designing fast and 
effective algorithms for building decision trees that gracefully adjust to the amount 
of available main memory. Finally, Morimoto et al. [29] devised techniques for 
building decision trees with wide domains for categorical characteristics. This 
effort focuses on enhancing the quality of the resultant tree.  

As with decision-tree learning, a variety of rule-induction techniques are 
capable of scaling to very large data sets. IREP [27] is a rule-learning algorithm 
that is capable of handling huge amounts of noisy data effectively. The primary 
reason for its effectiveness is because it employs a technique called incremental 
reduced error pruning, which prunes each rule immediately after it is induced, 
rather than after all rules are created. This accelerates the induction process since 
pruned rules allow for the removal of a larger subset of the remaining positive 
cases each iteration than non-pruned rules do. Regrettably, the accuracy of class 
descriptions learnt using IREP is frequently worse than that of class descriptions 
learned using the C4.5 rules method [1], a rule-inducing variation of C4.5. [18] 
described various changes to IREP aimed at increasing its accuracy, including a 
different rule-evaluation criterion, a different stopping condition, and a post-
processing optimization operation, resulting in the method RIPPER. He 
demonstrated that RIPPER is error rate competitive with C4.5 regulations and 
retains the efficiency of IREP. RIPPER is capable of handling characteristics that 
are missing, continuous variables, and numerous classes. As a result, it may be 
applied to a broader range of benchmark issues. 

 
D. Applications of Machine Learning Techniques in Manufacturing 

The present section outlines certain applications related to the machine-
learning within the manufacturing industry. To date,  machine learning algorithms 
are domain-independent. They might, in principle, be an extremely helpful 
resource for promoting knowledge-based platforms. Attempts to use machine-
learning techniques follow a consistent trend. The method is divided into five 
stages: formulation of the issue, definition of the representation, collection of 
training data, evaluation of acquired knowledge, and deployment of the knowledge 
base [29–30]. Machine learning has been effectively used to a broad variety of 
manufacturing applications. [31] presented an inductive-learning technique and 
utilized it to create a qualitative knowledge-base from simulated experiment data. 
Inductive learning was utilized to construct a comprehensive characterization on 
the ranges of the process parameter for a class (specified by the variables of the 
classification goal factors). By doing so, the produced knowledge-based may be 
used for deductive reasoning and process control.  [8] investigated process-
planning decision-making difficulties using inductive learning. They acquired 
information about steel mill processing pathways using a mixture of induction and 
interview data. Even though, the experts were relatively communicative, 
substantial time and energy were spared by assisting the specialists in 
standardizing and organizing their knowledge using the rule of induction.  



ISSN 2302-4364 (print)  ISSN 2549-7286 (online) 

Indonesian Journal of Computer Science   Vol. 11, No. 1, Ed. 2022 | page 35   

Engineers have used inductive learning approaches to synthesize vast 
quantities of data to aid in decision making. An inductive-learning method was 
utilized to interpret data from turning-process simulations in support of 
manufacturing's machine operation planning [26].  [25-27] proposed a knowledge-
processing technique that integrates the technical capabilities of modeling and 
optimisation with identifying patterns in data. The method of inductive learning 
was combined with multi-goal optimisation to create a system that offers scientists 
with customizable support throughout both the model generation and use stages. 
It is becoming highly essential in production information systems to build 
autonomous schedule solutions as production stages get more sophisticated. 
Learning-based scheduling, which entails the automated adoption of dispatched 
parameters, is a viable technique for resolving this issue. Numerous efforts have 
been made to apply learning to planning issues [19–20]. The proposed approaches 
for developing a planning regulations utilizing inductive learning have been used 
to stream scheduling issues [23], job-shop scheduling difficulties [24], and flexible 
production system scheduling challenges [29]. The experimental data revealed 
that the offered approaches are capable of achieving effective scheduling.  

 [30] developed an inductive-learning system based on the Machine learning 
that autonomously incorporated knowledge into an intelligent system to assist 
aircraft blade maintenance. algorithms were used to just-in-time manufacturing 
systems. To begin, neural network models and decision trees were employed to 
determine the quantity of kanbans in a dynamic JIT production lines [18]. The 
quantity of kanbans is critical to the efficient running of a JIT manufacturing 
system. The data suggest that neural network models and decision trees are two 
viable methods with the ability to constantly alter the amount of kanbans. Second, 
an inductive learning technique was utilized to forecast JIT manufacturing 
performance using historical data that included both excellent and unsatisfactory 
manufacturing performance [4]. The CART decision-tree classifier was used in 
instance to build guidelines dynamically within a just-in-time manufacturing 
process. The guidelines developed are capable of properly classifying and 
forecasting manufacturing performance based on workshop characteristics, as well 
as identifying critical ties between the shop elements that affect manufacturing 
performance. The findings show that inductive learning is a viable approach for 
forecasting JIT manufacturing performance using dynamic shop-floor data.  

Reich highlighted the essential importance of machine-learning simulation 
within engineering design [25]. He demonstrated how machine-learning systems' 
information models abilities may be used to produce high-quality design concepts.  
[4] explored how machine-learning approaches may be used to solve the issue of 
steel ablation. They analyzed, classified, and predicted the quality of steel etchings 
using three distinct approaches. Artificial neural network, inductive learning, and 
case-based learning, a kind of instance-based learning, were used as methods. The 
findings showed that machine-learning approaches, with their capacity to evaluate 
and manage huge quantities of complex data in a variety of industrial processes, 
aid in reducing turnaround time and waste and optimizing resource usage.  

Contemporary sensor-equipped devices, like airplanes, produce enormous 
quantities of quantitative and conceptual information during the operation and 
maintenance.[32] devised a method for utilizing this data to construct models for 
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forecasting when and how to change key airplanes parts prior to failure. To deduce 
the necessary models, three distinct machine-learning approaches have been 
utilized: induction learning, example-based learning, and Bayesian learning.  

Semi-conductor industrial production is a demanding process that requires 
continuous supervision of a huge number of factors from the first phases of 
production through the final product's packaging. Enhancing the production 
system's quality needs extensive data processing, which is still accomplished by 
experienced experts. A typical wafer manufacturing factory processes up to one 
million wafers per day [6]. Due to the volume of available data, the analysis of the 
data is a very demanding and complex process. Numerous scholars suggested 
methods for incorporating machine-learning techniques into semi-conductor 
production [7]. The findings of the research demonstrated that machine-learning 
approaches may be effective instruments for continuous improvement process 
within a big and complicated process like semi-conductor production.  [31 built a 
smart data-mining method and used it to the study of wearable digital goods' drop-
testing information in order to uncover important design information. The method 
of rule induction used is the Classifier technique. The suggested system's 
methodology is adaptable and may be used to a variety of other design and 
production operations in order to decrease costs and improve efficiency.  [21] 
described an industrialized optical monitoring system for quality control purposes 
in large scale production. The design allows use of the RULES-3 algorithm for 
inductive learning. Peng [15] designed a smart surveillance system based on fuzzy 
inductive learning for increasing the efficiency of industrial operations. The 
approach has been successfully utilized to diagnose the state of tapping operations 
in order to assure product quality. [16] discussed how data mining and machine 
learning approaches were applied in a steel bar production firm. The program 
analyzed make-to-order (MTO) vs make-to-stock (MTS) orders, product sale 
profiles, rogue orders, late orders, and product combination orders. The findings 
established that the methodologies used may extract data to aid in intelligent 
decision making in industry. Other applications include developing decision rules 
for conceptual design of steel members subjected to bending [17], diagnosing 
engine faults [18], detecting manufacturing defects in disk drives [19], diagnosing 
motor pumps [8], analyzing non-destructive testing of spotweld quality [29], 
managing and controlling raw material procurement, and accelerating rotogravure 
printing. 

1.  Advantages of machine learning application in manufacturing 
[29-30] argued that the basic advantages of machine learning have been shown 

in earlier sections, including the ability of machine learning approaches to tackle 
NP-complete issues that frequently arise while optimizing smart manufacturing 
systems. This section will discuss machine learning techniques' ability to manage 
high-dimensional, multidimensional data and their capacity to spot latent 
correlations from huge data sets within a complicated and evolving, sometimes 
volatile situation. Because the majority of engineering and industrial issues are 
information yet knowledge-scarce, machine learning offers a means of increasing 
the domain expertise [31]. The benefits are described in this article in an attempt 
at generalization for machine learning in general. Nevertheless, it must be 
recognized that the peculiarities of the benefits might vary based on the machine 
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learning approach used. In general, it is accepted that machine learning enables the 
reduction of cycle time and scrap, as well as the optimization of resource usage, in 
specific NP-hard manufacturing issues. Additionally, machine learning enables 
continual quality enhancement within an intricate system like semiconductor 
manufacturing.  

One benefit of machine learning techniques is their capacity to manage issues 
and data with a high degree of dimension. This will almost certainly become much 
more critical in the future, given the rising availability of large information and the 
lack of openness in manufacturing. As is the case with the majority of the pros and 
downsides of machine learning methods, this cannot be extrapolated. Certain 
techniques (for example, SVM; Distributed Hierarchical Decision Tree) are better 
at dealing with large dimensionality than others. As previously stated, in 
manufacturing, machine learning algorithms able to manage large amounts of data 
that are primarily used [18]. As a result, the capacity to deal with high 
dimensionality is viewed as a benefit of machine learning applications in 
manufacturing. Another advantage of machine learning approaches is the 
improved accessibility of algorithms as a result of (often open source) applications 
such as Rapidminer. This enables (relatively) simple implementation in many 
instances, as well as convenient parameter modification to improve classification 
results. 

As previously stated by [29-30-31]  a significant benefit of machine learning 
algorithms is that they enable the discovery of heretofore unrecognized (inherent) 
information and the identification of inherent relationship issues within set of 
data. The requirements about existing data differ according to the attributes of the 
machine learning algorithm. Nevertheless, the overarching capability of the 
machine learning model to yield change within a factory setting has been 
demonstrated successfully.  

Provided the vibrant, ambiguous, and sheer complexity of manufacturing 
technologies. In this, machine learning techniques enable the complex system to 
learn from its environment and adapt to it instantly and to some degree. The 
transformation is relatively quick, and in almost all cases faster than conventional 
methods, relying on the machine learning algorithm used. Implementing  machine 
learning in industrial production might well lead to the derivation of patterns from 
available data, which could also serve as a basis for developing estimations 
concerning the system's future performance. Such a new knowledge could be used 
to assist key stakeholders in making decisions or to directly improve the system. 
Finally, some machine learning techniques attempt to identify some patterns or 
consistencies, which characterize the relationships. [30] evaluated by comparing a 
few algorithms based on their performance in various manufacturing applications. 
Although this provides an initial impression, it is not recommended to base the 
selection of the appropriate machine learning model purely on the analogies 
introduced in such a table. So every dilemma is unique, and each algorithm's 
performance is also dependent on the availability of data, information which was 
before, and parameterization. The optimal algorithm should be discovered through 
extensive testing in a realistic environment.  

Additionally, supervised machine learning techniques are frequently used 
within manufacturing applications owing to the information and yet knowledge-
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scarce nature of the issues. Additionally, supervised machine learning might very 
well profit from existing information gathering procedures in manufacturing for 
statistical process control purposes and from the reality that most of these data are 
labeled. Essentially, supervised machine learning is "learning from scenario given 
by an experienced external supervisor". This is partially because (a) specialist 
feedback (– for example, quality) and (b) clearly labelled incidences are available. 
Supervised machine learning is used in a variety of industries, with industrial 
production, tracking, and control becoming a particularly prominent one [12-13].  

The basic process of supervised machine learning entails several stages, 
including ability to handle the data and configuring the training and test data sets. 
The necessary information is collected and pre-processed depending on the nature 
of the issue. A critical component is the training set design, since it has a significant 
impact on the subsequent classification outcomes. Although it frequently does 
seem as though the algorithm classification is often dictated by the description of 
the datasets, the description of the testing dataset should also take the algorithm 
preference requirements into consideration [7]. Certain algorithms allow for a 
procedure termed as 'kernel selection' that accommodates the algorithm to the 
unique characteristics of the issue. This demonstrates the ability to adapt of 
machine learning applications and the breadth of issues that can be addressed. 
Related guidelines are applicable to a lesser degree to data identification and pre-
processing, as existing algorithms have varying strong points and disadvantages 
when it comes to managing diverse data sets. After selecting an algorithm, it is 
trained on the training data set [9]. The trained algorithm is then evaluated against 
the evaluations data-set in order to determine its ability to perform the targeted 
task. Depending on how well the trained algorithm performs with the evaluation 
data-set, the parameters can be changed to enhance performance in cases when 
performance is already good. If the performance is not satisfactory, the procedure 
must be restarted at a previous step, based on the actual performance.  As a 
general rule, 70% of the data set is used for training, 20% for evaluation (to adjust 
parameters such as bias), and 10% for testing. The next section discusses 
supervised learning algorithms in greater detail, as they are the most often 
employed algorithms in manufacturing today. A significant reason for this is the 
widespread availability of 'labels' based on quality checks in a variety of 
manufacturing applications [29]. 
 
E. Proposed Machine Learning Model 

The propose an integrated machine learning model propose in this study was 
adapted from [12-21-29-30]. The mode is made of property-structure correlations 
in this section. The design approach may be employed to develop products with 
specified mechanical property distribution. Such material properties distribution 
would be obtained by component design customization, not through the use of 
various materials. The figure below illustrates the model within which this design 
technique operates. The proposed Machine learning model consists of four phases.  

Phase 1: identify the appropriate design space. This involves defining the 
desired characteristics (– for example, the stress-strain reactions of an ankle 
brace) and the desired design factors (e.g., the geometric variables of horseshoe 
structure for ankle brace). Create a sampling method for the design space, and then 
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simulate the mechanical characteristics of each sampled location. This will save the 
mechanical characteristics of components with varying geometries. The purpose of 
this stage is to collect sufficient data to construct a machine learning model [21-
29].  

Phase 2: Build the machine learning model. While selecting a machine 
learning (ML) fundamental structure (– for example, convolutional neural network 
(CNN), or deep neural network (DNN), the following criteria should be observed 
[21].  

• If somehow the mechanical attribute must reflect a distribution; for 
example, the stress-strain curve must be exactly, a CNN can be used to construct 
the model. Since CNNs are extremely good in picture classification and 
identification, the image of the stress reaction, or any other desirable property 
distribution, may be utilized for training [46].  

• If the required characteristic is based on a single or a few points rather than 
the whole stress-strain curve or other distribution (– for example, stress equals 11 
MPa when strain equals 0.3 in orientation, hence a DNN may be utilized to 
construct the machine learning model. The link between precise inputs and 
outputs may be modeled as a regression issue that DNNs excel at solving [21].  

Phase 3: after establishing the machine learning model, the needed 
mechanical characteristics may be utilized as input (points data for DNN, images 
for CNN). Then, the machine learning model may immediately produce the design's 
qualifying geometry [21].  

Phase 4: Finally, the resulting component with the desired geometry may be 
submitted to an additive manufacturing facility for manufacture [21]. 

 

 
  
Figure 4: An integrated Machine Learning Model for Manufacturing industry 

[21] 
As adapted from [12-21-29-30]; the proposed machine learning model is 

intended to resolve the previously mentioned operational issues by allowing the 
digitalisation, robotization, and connectivity of manufacturing systems, as well as 
by incorporating computer-aided initiatives and autonomous technology into 
production processes. Distributed intelligent and Internet-based platforms could 
offer 'artificially intelligent management,' that combines self-controlling 
technologies to manage organizations with a high degree of complexity. This 
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capacity can substantially increase responsiveness and flexibility. In other words, 
businesses may realize significant efficiency gains by developing and 
implementing smart systems and technologies throughout their operating 
processes . Numerous businesses have recognized the potential benefits of 
Industry 4.0 enabler technologies and are investing heavily in sophisticated 
technology and robotics. According to PWC's 2016 worldwide Industry 4.0 study, 
the majority of businesses - around 60% - anticipate seeing a return on investment 
(ROI) within two years or less for their Industry 4.0 initiatives, while the 
remainder anticipate a ROI of around five years. Given the considerable 
advantages and long-term effect of sophisticated technical advances, a return on 
investment of between two and five years appears acceptable and feasible. The 
following sections describe the primary benefits of the proposed machine learning 
model as it can be seen in Figure 4. 

A. Optimization of production efficiency 
The application of the integrated Machine Learning Model in Manufacturing 

industry as shown in figure 4 above has the ability in:  
• Optimizing the utilisation of resources and reducing the potential downtime   
• Improving direct and indirect labor productivity  
• Overseeing the expenses of supply chain and synchronization  
• Assuring the accuracy and reliability of schedules and plans 
• Discovering new growth opportunities for the core business  
• Increasing  aftermarket income streams 
• Expanding consumer understanding and knowledge  
• Improving customer integration and channel management 
• Creation of novel items and service offerings 
• Deepening globally and in emerging marketplace  
B. Developing intelligent goods and/or services  
With the application of the integrated Machine Learning Model in 

Manufacturing industry, Goods in the Era of industry 4.0 span the technical 
spectrum. The combination of Information Technologies such as sensors and 
wearables with advanced production techniques such as additive manufacturing, 
sophisticated computer numerical control, and robots can result in product 
enhancements. The Potential of Industry 4.0 applications for product 
transformation is presented in the below lines: 

• Enhancing the effectiveness of pre-existing items: Incorporating sensing 
devices and interface to enhance performance of the product or safeness; 
connecting to smart devices to enhance the end-user experience; upgrading 
current goods with new materials to increase performance. 

• Providing intelligent technology-generated data as a goods or services : 
Providing accessibility  to data and analytics produced via current company 
activities; designing and offer in a platform for managing data from interconnected 
product lines; creating customized data packages for individual consumers. 

• Creating brand-new products and services : Developing mass customisation 
at an affordable price; enabling novel and mixed innovative products using 
advanced production technology; build innovative service models and revenue 
streams. 
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Undoubtedly, companies have already been utilising advanced   additive 
manufacturing and smart scanners and embedded sensors to develop novel 
products and enhance existing ones, therefore offering new degrees of value to 
consumers and additional data streams. In one such instance, operation technology 
and Information Technology are being utilized to mass customize medical devices 
that are required by a large number of people but each has its own unique design 
and conditions.   

C. Engaging and incorporating consumers in innovative ways  
The application of the integrated Machine Learning Model in Manufacturing 

industry. Manufacturers may gain a deeper understanding of their consumers by 
utilizing data and information acquired through smart goods and services. 
Certainly, consumer experience with in the age of Industry 4.0 is influenced not 
just by the physical item, however also by the information and data analytics, 
which make the consumer's engagement with the product more visible and have a 
variety of other effects on the customer-manufacturer relationship. Potential 
Industry 4.0 applications for customer transformation is presented in the lines 
below:  

• Smartly market and sell items and services: Utilize data to enhance end-
users intelligence; implement smart pricing models depending on inventories and 
user information; and utilize statistics to forecast consumers' necessity for spare 
parts. 

• Enhance the post-purchase experience: Utilize data to monitor resource 
quality, and component and system failures in order to anticipate consumer 
demands and optimize availability; conduct fleet performance/operation analysis; 
and boost customer satisfaction via sensing applications. 

• Maximize availability and efficiency: Utilization of data to connect the 
appropriate items with the right retailers at the right time to improve inventory 
management; monitor the consumption, effectiveness, and placement of goods 
remotely; improve product distribution 

User information may be utilized to more rationally price and offer products 
and services. For example, the Deutsche Bahn, a European cargo rail consortium, 
for example, incorporated its huge system of railroad monitoring sensors with its 
consumer purchasing and invoicing dataset and provided factual data about 
congestion and capacity to produce smart pricing structures tailored to a client's 
needs and current conditions. 29 Uber, for its part, utilizes data from its drivers 
and consumers to fuel an algorithm that generates surge pricing, a dynamic pricing 
mechanism that adjusts costs upward in response to increased demand. 30  

IT and OT have the ability to increase product and service quality, as well as 
asset usage intelligence. Additionally, this data may be used in both directions: it 
can be transmitted to the manufacturer and its partners, as well as returned to the 
consumer via smart apps that enhance the user experience. In one such instance, a 
pharmaceutical firm explored incorporating smart monitoring sensors into its 
inhaler product line in order to collect real-time data and analyze it in order to 
provide insights to both patients and clinicians. 31 

D. Engineers: Advancing innovation and development cycle  
With the application of the integrated Machine Learning Model in 

Manufacturing industry as illustrated in figure 4. Goods are designed and 
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constructed at the beginning of the production life cycle. Numerous Industrial 
revolution 4.0 innovations such as additive/advanced manufacturing and 
information technology, as well as digital tools like as Computer - aided design and 
modeling can be used to significantly affect the process in a variety of ways. 

• Reduce the time required to bring an innovation to market; Utilize fast 
prototypes and production capacity to create new goods and minimize supply 
chain reliance; setup new software solutions using cloud-based development tools. 

• Improved connection between design and product intelligence: Utilize data 
to predict design problems and address them; design goods and simulate usage in 
terms of total cost of operation and supply chain ramifications; and assess product 
design choices in terms of manufacturing processes. 

• Enhance the engineering profession's overall performance: Develop and try 
out new goods using digital simulation software; enable open source copyright 
sharing to inspire or enhance ideas 

Rapid prototyping with digital-to-physical manufacturing technologies such 
as additive printing can accelerate both the design and manufacture of end-use 
goods, therefore decreasing supply chain dependency. For example, Ford believes 
that by utilizing fast prototyping during vehicle design, it may save weeks by 
fabricating prototypes in hours rather than the four to six weeks required by 
traditional machine tooling techniques, allowing vehicles to reach the market 
months sooner. Engineers can also maximize manufacturability by evaluating 
product design alternatives in light of the ultimate assembly process. Products are 
conceived and designed at the start of the manufacturing value chain. Numerous 
Industry 4.0 technologies—particularly operational technologies such as 
additive/advanced manufacturing and information technology, as well as digital 
tools like as CAD and simulation—can be used to significantly affect the process in 
a variety of ways.  

E. Planning: Forecasting change and reacting to it in real time  
When manufacturing companies prepare for production, they frequently 

confront a slew of uncertainty along the manufacturing value chain. Information 
Technology and Operation Technology can help facilitate a number of 
transformations in this area. 

• Demanding sensors and planning: Gather and assess data to continuously 
monitor demand trends; follow products movement across the supply chain for 
demand planning reasons; and proactively recommend product replenishment to 
consumers as needed. 

• Supply chain management and transformation of suppliers: Allow suppliers 
to monitor and control inventories in the Original equipment manufacturers 
supply chain; have a better knowledge of supplier capacity and lead times; and 
make better pricing decisions by utilizing external market information. 

• Optimizing the outbound networks: Inventory tracking in forward 
networks; real-time route changes for distribution vehicles in response to 
unanticipated events; and the ability for consumers to follow delivery progress by 
precise location. 

Demand sensing and planning via the use of information technology (for 
example, sensors, signal aggregation, optimization, and prediction) enables 
manufacturers to collect data across the value chain. Data analysis may be used to 
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identify patterns, follow movement, and eventually understand what consumers 
want and where they want it—so businesses can plan more effectively to deliver it 
at the appropriate time and place. 

F. Factory: Establishing a digital connection between operational 
and information technology  

Maybe no other sector more exemplifies Industry 4.0's physical-to-digital 
transition than the smart manufacturing. Physical-to-digital technologies such as 
augmented reality, sensors and controls, wearables, and the Internet of Things 
enable the industry 4.0-enabled factory to track movement and production, 
monitor quality control, and manage the tooling life cycle, among other 
capabilities. Thus, Industry 4.0 on the factory floor can enable increased capability 
effectiveness, knowledge about production assets, and activity synchronization 
and flow. 

• Increasing the productivity and efficacy of labor: Improve manufacturing 
and assembly abilities; labor productivity monitoring; employee mobility and 
efficiency monitoring; and real-time safety monitoring of both personnel and 
equipment. 

• Intelligence on production assets: Proactive sensing and quality control are 
used to identify problems; predictive maintenance is used to maintain 
manufacturing machinery; and tooling life cycle management is used to manage 
tooling. 

• Synchronization and flow of activities: Utilize technology to enable dynamic 
routing throughout the manufacturing process; conduct virtual build simulations 
to determine the efficacy of engineering modifications to the production floor; and 
accommodate variable environmental elements that may affect machines. 

Industrial revolution 4.0 technology can improve worker safety while also 
increasing labor productivity and effectiveness. Joy Global, a producer of mining 
equipment, equipped its remote-controlled extraction gear with over 7,000 
sensors, enabling it to dig in incredibly deep mineshafts—areas that are frequently 
perilous for the personnel who normally conduct the operation. Similarly, Boeing 
employs a positioning system to determine the location of workers and to monitor 
the condition of their safety harnesses, therefore increasing worker safety. Beyond 
labor productivity and safety, Information system may alter the intelligence of 
product assets. Harley-Davidson, for instance, employs intelligent technologies to 
detect problems throughout manufacturing processes. In its York, Pennsylvania, 
factory, a smart system analyses equipment performance and takes action 
autonomously. When measurements are detected to be outside of permissible 
ranges, the machinery is immediately modified to avoid problems. 

 
F. Conclusion 

Digital technology has increasingly penetrated into the manufacturing and 
industrial operations over the last decade. Significant advancements in the realms 
of the Internet of Things, Cloud Computing, drones, blockchain technology, 
sensors, machine learning have impacted the manufacturing sector significantly. 
This once-in-a-generation phenomenon, frequently referred to as "the Industry 
4.0," has acquired significant pace. Industrial revolution 4.0 has the potential to 
fundamentally alter how things are designed, manufactured, and used, while also 
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catalysing the emergence of new marketing strategies, products, and practices. 
Whilst Fourth industrial revolution has several potential for economic growth, its 
long-term implications are largely unknown. Fourth industrial revolution 
emanates in the context of trying to press the worldwide issues such as global 
warming, food shortages, inaccessibility to electricity, water shortages, ecological 
degradation, and resource depletion, as well as emerging trends such as 
population growth, urbanization, and massive immigration, and also current and 
longstanding conflicts and crises globally. This poses the problem of whether – and 
how – Fourth industrial revolution might help to the development of novel 
approaches to deal with certain key social, economic, and environmental concerns. 

To this end, the manufacturing sector is undergoing numerous changes. 
Production process, sophisticated material, intelligent, computerized equipment, 
and other breakthroughs are entering into a new era of large scale manufacturing. 
Simultaneously, improved connectivity and incredibly advanced data collection 
and analytics capacities afforded by the Industry 4.0 technologies have accelerated 
the transition to a data-based economy. with industry 4.0 physical items, data is a 
source of value in the Internet of things connectivity enables the creation of 
intelligent supply chain operations, manufacturing techniques, and even end-to-
end environments. While these winds of innovation continue to influence the 
market environment, decision makers in manufacturing sector should decide when 
and where to adapt to new technologies, including which options can yield the 
highest return on investment for their companies. Along with accurately 
measuring their existing key points, effective manufacturing companies should 
therefore articulate their business goals clearly, pinpointing where to function in 
emerging digital environment and, more importantly, what types of technology, 
both physical and virtual, they might very well implement in order to pursue their 
winning decisions. Notwithstanding the hoopla surrounding sophisticated physical 
and virtual advancements, few studies have been conducted in this regards. 
Similarly, numerous stakeholders are unsure of the implications of all this 
connection for their businesses — and for the wider manufacturing environment.   
Nevertheless, one thing is certain: underestimating the critical importance of 
information flow play in the physical components of smart factories would be a 
mistake. To fully exploit the benefits presented by both the physical and virtual 
worlds, it is critical to integrate them—to leverage digital data from a variety of 
sources and locations to drive the physical act of manufacturing. In other words, 
integrate the industry 4.0 technologies and operations technology to build a more 
robust manufacturing establishment. Further, in order to counteract the current 
ever-growing worldwide competition regarding products quality and production 
overheads, as well as the necessity for production flexibility, call for the 
transformation of manufacturing system in order to allow a higher degree of 
functionality and synergy across business operations. Most of traditional 
computer-integrated initiatives and modern manufacturing systems remain 
constrained and apply to only a subset of organizational functions. This narrow 
capacity that results from the lack of interconnectivity and synchronization among 
production and enterprise systems, prevents those technologies from reaching 
their full potential in the production. Hence, machine learning as a subset of 
Artificial Intelligence, has the potential to establish a foundation for tackling 



ISSN 2302-4364 (print)  ISSN 2549-7286 (online) 

Indonesian Journal of Computer Science   Vol. 11, No. 1, Ed. 2022 | page 45   

integration challenges by offering extensive interconnectivity. Thus, this study 
develops an integrated machine learning model applicable to manufacturing 
industry. The proposed model has the potential of Optimization of production 
efficiency; Establishing a digital connection between operational and information 
technology;  Forecasting change and reacting to it in real time; Advancing 
innovation and development cycle;  Engaging and incorporating consumers in 
innovative ways;  Developing intelligent goods and/or services. 
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