
Indonesian Journal of Computer Science
ISSN 2549-7286 (online)

Jln. Khatib Sulaiman Dalam No. 1, Padang, Indonesia
Website: ijcs.stmikindonesia.ac.id | E-mail: ijcs@stmikindonesia.ac.id

Attribution-ShareAlike 4.0 International License Vol. 11, No. 2, Ed. 2022 | page 412

A Heterogeneous Hybrid Cloud Storage Service Using Storage Gateway with
Transfer Acceleration and Diff Algorithm

Jamal Abdul Nasyir1, Idris Winarno2 and Udin Harun Al-Rasyid3
jamal.nasyir@gmail.com1, idris@pens.ac.id2, udinharun@pens.ac.id3
Polikteknik Elektronika Negeri Surabaya

Article Information Abstract

Submitted : 3 Aug 2022
Reviewed : 5 Aug 2022
Accepted : 30 Aug 2022

Recently, the cloud service has the potential to replace conventional
cluster and grid systems. The objective of migrating apps to the cloud is to
minimize maintenance and procurement expenses while simultaneously
boosting scalability and availability. However, embra=cing cloud
technology created some challenges, such as the complexity of cloud
storage. In addition, many clients underestimate if it is not plug-and-play.
Each vendor has its access methods, and nonstandard application
programming interfaces (APIs) make integrated applications, such as
archiving or sharing data with cloud storage, complicated, costly, and
require high throughput.Furthermore, organizations did not have many
alternatives for implementing high-performance object storage systems in
the cloud and on-premises data centers until now. In this paper, we would
like to suggest a storage gateway as a solution to this issue and will
optimize it using Transfer Acceleration and Diff algorithms to improve the
performance, Intelligent Tiering to reduce costs, and Server-Side
encryption for extra protection. Moreover, utilizing Storage Gateway has
proven can provide more efficient integration between the on-premises
data center environment and the AWS Cloud Storage ecosystem that is
safer and more reliable. This technology can work in a common data
center environment regardless of the vendor used by the company it can
communicate seamlessly with the AWS Environment.

Keywords

Hybrid Storage, Storage
Gateway, Transfer
Acceleration, Intelligent
Tiering, and Diff
Algorithm

mailto:ijcs@stmikindonesia.ac.id
https://creativecommons.org/licenses/by-sa/4.0/

 ISSN 2549-7286 (online)

Indonesian Journal of Computer Science Vol. 11, No. 2, Ed. 2022 | page 413

A. Introduction

The technology of using the cloud got the hype in this era due to the fast
deployment, efficiencies, scalabilities, and big availabilities of networks asset that
self. As a result, cloud computing has completely changed the game in the
contemporary digital environment. Many businesses have moved their IT
infrastructure there due to this technology. The cloud is undoubtedly a network of
virtualized computers that are dynamically provided that performs parallel and
distributive computing and are used by the user as a single computing resource in
accordance with previously established "SLA" or Service Level Agreements. By
enabling customers to access and store data remotely through cloud services, it
would be possible to offer highly available and on-demand services without the
hassle of managing local devices and software. [1] Cloud computing services have
recently had a tremendous possibility to contribute as an alternative to traditional
clusters and grid systems. Costs for acquisition and upkeep are decreased by
moving our apps to the cloud. While increase=ed availabilities and scalabilities [2].

Although, there was some opposition when adopting cloud technology, such
as integrating storage between premises and the cloud. However, cloud technology
presents other challenges, such as merging on-premises and cloud storage.
Moreover, some clients underestimated the suitability of this concept. As we
already know, each brand has unique APIs and access to connecting apps.
Consequently, it may not be plug-and-play [3]. Sadly, consumers do not currently
have many options for deploying an object storage system between an on-
premises data center and the cloud with high-performance capabilities. Based on
that problem, we propose using the Storage Gateway technique to enable a secure
and smooth integration between on-premises data center systems and collaborate
it with the Diff Algorithm. We choose Xdelta as our Diff Algorithm to optimize our
concept since it is a widely used de-facto standard implementation of diff
algorithms of this generation. The main advantage of using a compression method
can significantly reduce the delta file size. A data block will never appear in the
delta more than once, it may be referred to more than once, but the block's actual
data will only be loaded in the delta once. It is a significant difference from the
previous approaches. This technology should be worked in almost all the data
center environments regardless of the vendor it can communicate perfectly with
the Environment of the Cloud.

B. Related Work

It has been several studies that have been concerned about the storage-gateway

hybrid. An overview of cloud computing's data storage [1] A study review was
conducted to discuss the common problems and issues in cloud storage and
compared several storage gateways, primarily AWS Storage Gateway and IBM
Storage Gateway.

Also, Lately, that was a study on Storage Gateway Medical Imaging on an
Intelligent Cloud [4]. Communication delay is a serious problem that currently
prevents the use of this concept in medical imaging applications.

 ISSN 2549-7286 (online)

Indonesian Journal of Computer Science Vol. 11, No. 2, Ed. 2022 | page 414

Furthermore, HyCloud: Tweaking Hybrid Cloud Storage Services for Cost-
Efficient Filesystem Hosting [5] has done some research on hybrid cloud storage
has been done by hosting to optimize cost-effectiveness in AWS service.

Depend on the issue of adopting the technology of the cloud storage, which quite
has big complexity and meets the need of users by using cloud storage to lower
capital costs without lowering performance and productivity. In these segments,
the authors Would like to present our initial attempt at a hybrid architecture that
may link local data storage with online storage. The authors desire some systems
that can optimize the transition from on-premises to the cloud while bridging the
gap by utilizing CDN technology.

The data handling must also be upgraded to achieve greater control and data
closeness from the storage gateway. By turning on those options, Bucket can
automatically decide if a file is regularly viewed or not and determine which file
has been moved to the deep archive category by classifying the entire data.
Additionally, turn on the Bucket's Server-Side encryption for increased data
security.

There are numerous well-known, significant public cloud providers, including
AWS, Azure, GCP, Alibaba, Oracle Cloud, IBM Cloud, and many others. For this
research, purpose author would like to use AWS providers to deploy our system
design.

C. Preliminary Research

Previously we have done preliminary work related to this research [22]. We

have successfully implemented the storage gateway that can work seamlessly to
bridge the on-prem to the cloud and optimized that storage gateway using
Transfer Acceleration from previous research. But, from that research, we also
have some findings where the previous system uses a lot of bandwidth since they
need to sync every single hour. That's why in this paper, the author would like to
make some improvements that can help to reduce the bandwidth usage by
implementing some simple algorithms called "Diff Algorithm." Typically, a diff
displays the differences between two different file versions. Modern
implementations also support binary files. The result is referred to as a patch or
"diff.". By generating the diff file containing the part, the user has changed.
Hopefully, it can reduce a lot of bandwidth, and we only need to upload the part
that has been changed.

D. System Design

A. An Overview

 ISSN 2549-7286 (online)

Indonesian Journal of Computer Science Vol. 11, No. 2, Ed. 2022 | page 415

Figure 1. Proposed System Design

Fig 1 shows this Storage gateway works for heterogeneous, which could be used
in several different OS environments, including RHEL, Ubuntu, and CentOS.
Additionally, this Storage gateway can use in Windows environments. The
connections will connect one to one with the bucket.

Integrating data between the branch and the headquarters will require a long
route and extra time. Considering that many branches are spread out thousands of
miles distant in a region. The authors intend to try to create some TA Technology
to address this problem by employing this TA Technology, which will direct the
data to the nearest edge point from the branch. By leveraging this link, the data
transmission between the branch and headquarters is faster and more secure
because the data transmission is not using public routes. The TA providers will use
their global backbone to transport the data to the origin between their respective
regions. Every single connection will be encrypted using SSL. In addition, using
server-side encryption, all data on the server will be encrypted (SSE) using a Key
Management System (KMS) to a Cryptographic key managed. It does not stop
there, to enhance the system author would try to implement Delta Incremental
data uploaded, which can detect data changes and find the differences between the
old file and a new one if there are any changes to a specific file, and the system will
only upload the delta data that has been changed and no need to upload entire
data, The expected result of the technique will be reduced a lot of bandwidth
usage. When the term "storage gateway" is used, it refers to a service that enables
secure, the setting of cloud storage and the user's on-premises IT infrastructure is
tightly integrated, as well as local storage devices or defined routes stored inside
the server. Using this service, users could safely upload their data to the cloud for
scalable and affordable storage. The storage protocols supported by this Storage
Gateway are those utilized by our idea. Keeping utilized data on-premises and this
storage gateway produces low latency performance and securely stores all
encrypted user data copies in the bucket. Also, this technique may be used to

 ISSN 2549-7286 (online)

Indonesian Journal of Computer Science Vol. 11, No. 2, Ed. 2022 | page 416

disaster recovery as a cloud-hosted solution with a native computer system
replicating the production environment [6].

Table 1. Specification Testing Environment

Environment Name Details

DC-1
(Sao Paulo)

CPU 2 vCPU

Memory 4 Gb

Disk 100 Gb

OS RHEL 8.1

DC-2
(Frankfurt)

CPU 2 vCPU

Memory 4 Gb

Disk 100 Gb

OS Ubuntu 20.04

DC-3
(Singapore)

CPU 2 vCPU

Memory 4 Gb

Disk 100 Gb

OS CentOS

As we can see on the TABLE I In this testing environment, we developed three
distinct types of services running on three different OSs to keep prefixes and
directories in sync with our storage gateway. While files are added to a bucket,
intelligent tiering automatically classifies them based on their requirements,
recursively copies new and updated files from the source directory to the
destination directory.

B. Transfer Acceleration (TA)

Figure 2. Transfer Acceleration Concept

Users can expedite the upload of information or material from around the globe
to a single bucket by using transfer acceleration, often known as TA. Singapore can
be used as a central bucket in this situation. As shown in Fig 2, by leveraging
network protocol improvements, the provider's global backbone, and
automatically sending data to the closest abuse edge location, Transfers may be
sped up through transfer acceleration. Transfer acceleration makes bypassing a
large portion of the public Internet and ISP bandwidth restrictions possible.
Performance improvements often vary from 50% to 500%, depending on how
close the bucket is to the intended application. The infrastructure required to

 ISSN 2549-7286 (online)

Indonesian Journal of Computer Science Vol. 11, No. 2, Ed. 2022 | page 417

support the services offered by TA providers is often housed at dozens or even
hundreds of points of presence worldwide. When using a quick local internet
connection, the user's application must upload large items or transmit data across
continents. Our requests for foot objects must be directed to the endpoint to
exploit this TA, and all requests may benefit from the transfer acceleration
provided by the global provider backbone [7].

C. Data Handling

In this work, the author is trying to emphasize on two kind of data processing
techniques that we want to implement. Server-side encryption for the bucket as a
safeguard data from unwanted and illegal access while at rest (SSE-KMS). And
Intelligent Tiering that can automatically handle our data to reduce bucket
consumption costs.

1) Intelligent Tiering

Figure 3. Data Handling Concept [7]

As we can see on the Fig 3 it showing there are 4 different tiers that we have on
this storage bucket:

• Standard— This storage options are inexpensive and great for frequently
accessed data

• Standard Infrequent — This storage is designed to the data with infrequent
access and have standard-class pricing.

• Archive Storage — This classes are designed to archive valuable data for a
long time with sparse access at a reasonable price. However, it will take
some time to retrieve any data that the user may have saved here.

• Deep Archive Storage— This classes are designed to archive valuable data
for a long time with sparse access at a reasonable price. However, it will
take some time to retrieve any data that the user may have saved here.

Intelligent tiering is a storage type that may make storage more economical by
shifting data to tiers that can be accessed at a lower cost. Intelligent-Tiering is
designed to select the best storage class without sacrificing performance or adding
operational overhead when irregular access patterns. Intelligent-Tiering may
automatically save expenses by moving data at the granular object-level across
access tiers as access patterns change.

Intelligent Tiering will keep an eye on the access patterns and automatically
move items from one tier to the next without hiring a professional operator. For a
monthly object monitoring and automation expense, Intelligent-Tiering will
monitor the access patterns and move items from one tier to the next.

 ISSN 2549-7286 (online)

Indonesian Journal of Computer Science Vol. 11, No. 2, Ed. 2022 | page 418

2) Protecting Data at Rest

Figure 4. Server-Side Encryption Concept[7]

As shown in Fig. 4, for server-side encryption, a unique encryption key will be
generated for each individual object. The data will be encrypted using the
Advanced Encryption Standard (AES) and a 256-bit key (AES 256). The master key
will be kept secret and periodically rotated to protect the encryption key.

Moreover, the authors also use the SSL protocol to protect the data while it is in
transit, securing it twice.

D. Diff Algorithm

Figure 5. Delta Data Algorithm Simple Concept

To understand more about the Diff Algorithm, kindly refer to Fig 5 above to
understand how this delta data can work in the byte data example. Delta data
incremental upload, or what we can call as Diff Algorithm, was only a nice way to
say that we need to upload files that change or new files. Instead of uploading
every single piece of data to the bucket each time, the system just uploaded the
newly created or modified file. Additionally, this will save their bandwidth.

Diff Algorithm is an alternative term for storing or sending data as differences
(deltas) between sequential data and the whole file. Delta encoding is widely
known as delta compression when an updated archive history is needed (e.g., in
revision control software). The changes are stored in separate files known as
"deltas" or "diffs." Delta encoding considerably minimizes data redundancy when
only minor changes are made, such as modifying a few words in a vast manuscript
or a few entries in a large database. Collections of unique deltas use less space than
their unencoded equivalents.

By trying to implement this delta data, our goal is to minimize the data usage
when synchronizing all data for this storage gateway. Because there are many of

 ISSN 2549-7286 (online)

Indonesian Journal of Computer Science Vol. 11, No. 2, Ed. 2022 | page 419

data in our storage and we cannot upload the whole data every hour, we need a
solution that can save our bandwidth without reducing our RPO (Recovery Point
Objective) and increase performance. Therefore, for any application, selecting the
optimum delta algorithm requires reliable, comparative data on each technique's
effectiveness.

There are several forms of redundant data in storage systems, and a variety of
data reduction strategies are available to handle them. Please refer to TABLE II for
the specifics:

Table 2. Data Reduction Approaches Comparison

 General
Compression

Delta
Compression

Data
Deduplication

Objects All Data Similar Data Duplicate Data
Granularity String / Byte-

Level
String-/Byte-
level

Chunk-level

Rep
Techniques

Huffman
coding /
Dictionary
coding

Copy/Insert-
based Delta
encoding

CDC & Secure
signature

Approach
Dates

1970s 1990s 2000s

Rep.
Prototypes

GZIP, Zlib ,
Zstd

Xdelta, Zdelta,
Ddelta

Venti, LBFS¸
DDFS

• General compression (i.e., traditional lossless compression) approaches,
such as GZIP, focus on the internal compression of files or data chunks and
reduce byte- and bit-level redundant material by using Dictionary coding
and Huffman coding. Due to the subtle redundancy removal approaches,
general compression methods are usually time-consuming and only
compress data over a small region (e.g., a single file or a chunk).

• Delta compression aims to eliminate redundancy between similar
files/chunks. In general, it (e.g., Xdelta) finds repeated strings using the
Rabin-Karp string matching technique and then encodes matched
(duplicate) strings with the "Copy" instructions and the strings that do not
match the "Insert" instructions. Furthermore, Zdelta compresses
mismatched strings at the byte level using Huffman coding.

• Data deduplication is a chunk-level compression strategy for large-scale
storage systems that eliminates redundancy in fine details quickly. This
typically breaks files into roughly equal-length chunks using Content-
Defined Chunking (CDC) and then calculates each chunk's secure signature
(or termed fingerprint, e.g., SHA1) for duplicate matches. If two chunks have
the same secure signature, they are duplicates. This approach is simple, fast,
and easy to implement in large-scale storage systems. However, there is still
a lot of redundant data between the extremely similar but non-duplicate
chunks/files, which this thing can be handled via delta compression.

In contrast to general compression and data deduplication, delta compression
may remove redundancy among files/chunks that are quite identical, as was stated

 ISSN 2549-7286 (online)

Indonesian Journal of Computer Science Vol. 11, No. 2, Ed. 2022 | page 420

above. As a result, it has drawn more attention in recent years. Implement delta
compression on top of deduplication to further reduce redundancy and speed up
WAN replication of backup information. This shows that delta compression may
assist achieve a compression ratio around 2X greater than possible using
conventional methods. General compression (i.e., traditional lossless compression)
approaches, such as GZIP, focus on the internal compression of files or data chunks
and reduce byte- and bit-level redundant material using Dictionary coding and
Huffman coding. Due to the subtle redundancy removal approaches, general
compression methods are usually time-consuming and only compress data over a
small region (e.g., a single file or a chunk).

Table 3. Delta Algorithm Comparison

Algorithm Chunking Hashing Indexing

Myers
Algorithm

Rabins SHA-256 Arbitrary
indices

BSDiff Larsson &
Sadakane's
qsufsort

SHA1 Suffix Sort

Open-vcdiff Windows BlockHash suffix trees

Gdelta FSC Gear Array

Zdelta FSC Adler32 Hash Table

Ddelta /
Edelta

CDC Spooky/
xxHash

Hash Table

Xdelta FSC Adler32 Array

Note:
1. The term "chunking" refers to combining smaller bits of information into bigger
ones.
2. FSC refers to using a byte-wise sliding window to roll across chunks of material
to create fixed-sized and overlapping words and optimize duplicate-word
matching.
3. The Zdelta hash table determines the best match during indexing.
4. CDC refers to breaking the chunks into multiple variable-sized and non-
overlapping words to match duplicate words easily.
5.’windows' chunks are some processes VCDiff uses to deal with memory
limitations to partition the input file into chunks and process them separately.

In the end, we chose xDelta for our research because it has a high-quality native
code implementation with O(n). complexity. In other words, in the worst-case
scenario, the algorithm discards a larger delta than the original message, but we
don't waste much time generating these delta. This allows us to easily handle the
trade-off between the bandwidth saved by generating deltas and the CPU expenses
associated with generating these deltas.

E. Result and Discussion

Identical to what the authors said in section III (System Design) and Fig. 1, this

storage gateway operates flawlessly with three independent services, including
NFS, SMB, and FTP. All data will be automatically encrypted by the Default
Encryption, which was activated upon uploading the data into a bucket using the
cryptography key we previously established with an asymmetric key. This
encryption and decryption process will require a key pair.

 ISSN 2549-7286 (online)

Indonesian Journal of Computer Science Vol. 11, No. 2, Ed. 2022 | page 421

E. Storage Gateway Benchmarking

Based on our tests, our system can sync and replicate a whole data set and bucket
in our test environment without any difficulties after placing our script in the
crontab to guarantee that sync replication would occur once per hour. In addition,
we tried to add a new file or folder; the system will upload this new item to the
bucket according to the following schedule.

Utilizing the AWS Command Line Interface, the applications are linked to AWS
cloud storage using this storage gateway. It simplifies and reduces infrastructure
in the data center and remote sites. Even though the service provides cloud storage
that connects with your existing applications, the storage gateway utilizes
industry-standard storage protocols to provide a smooth administration
experience for the user. The file uploaded to an NFS, SMB, or FTP server would be
replicated using an AWS CLI command and kept in the bucket as a durable object,
allowing users to use it with other AWS services, such as analytics, and machine
learning, and lambda functions.

F. Transfer Acceleration (TA)

Table 5. Write Time Test Result

Site Run
With

TA
(s)

Without
TA
(s)

Efficiency
(%)

Min Max
Std
Dev

Average
(%)

DC-01
(Sao Paulo)

1 27,462 38,148 28,0

25,5 29,6 1,7 27,70 2 26,394 35,427 25,5

3 26,619 37,813 29,6

DC-02
(Frankfurt)

1 20,027 29,713 32,6

22,4 32,6 4,5 26,30 2 22,461 28,931 22,4

3 20,612 27,096 23,9

DC-03
(Singapore)

1 17,646 18,209 3,1

0,9 3,1 0,9 1,97 2 17,436 17,595 0,9

3 17,75 18,096 1,9

Table 6. Latency Test Result

Site Run
With TA

(ms)

Without
TA

(ms)

Efficiency
(%)

Min Max
Std
Dev

Average
(%)

DC-01
(Sao Paulo)

1 0,37 334 99,9

99,8 99,9 0,0 99,87 2 0,51 333 99,8

3 0,39 328 99,9

DC-02
(Frankfurt)

1 0,969 155 99,4

99,3 99,4 0,0 99,34 2 1,03 154 99,3

3 1,04 154 99,3

DC-03
(Singapore)

1 0,514 0,932 44,8

14,6 44,8 13,2 26,51 2 0,473 0,592 20,1

3 0,422 0,494 14,6

The authors have attempted to conduct the test in this section three-time write
benchmark to do a write benchmark test three times to compare TA on and off and
determine the extent to which the TA can alter the data transfer. To demonstrate

 ISSN 2549-7286 (online)

Indonesian Journal of Computer Science Vol. 11, No. 2, Ed. 2022 | page 422

whether we use type 2 (two) benchmarking methodologies to accelerate the data
transfer using this Transfer Acceleration

1) Write Time Test - Making a random file with a 1 GB file size is the first
method of measuring the write time test (Gigabyte). To generate this
arbitrary file, we utilize the "dd" tool. Then, using Linux's time function,
we must determine how long it will take to upload the 1GB file to the
cloud. And as a result, Transfer Acceleration functions quite effectively.
And based on TABLE IV we can conclude that The smooth operation and
high throughput of this storage gateway will be very beneficial for
transporting bigger things over longer distances

2) Latency Test - Our second method for determining the latency test
between on-premises and the cloud uses the Ping command with the "U"
argument to trace the round trip time of the package. According to the
table, the average efficiency rate of delay between DC-01 (Sao Paulo) and
DC-02 (Frankfurt) is rather high at a rate of more than 90%. The test was
attempted three times at each site by the authors.

Considering the results of the tests in this section, this TA has proven to be able
to enhance several network connections between the bucket and the premises. If a
higher throughput is required, Transfer Acceleration is the preferred option. The
TCP connection is optimized, and more intelligence is provided between the client
and the bucket.

G. Server-Side Encryption

Figure 6. Server-Side Encryption Result

The system will show an error because it could not decrypt the file when
unauthorized access was attempted. The bucket will be able to encrypt the file at
the bucket level rather than the object level, securing user data from hackers or
unauthorized people if Server-Side Encryption was successfully utilized to encrypt
the file and install it on the bucket using a certain key management system (SSE-
KMS). According to the Server-Side Encryption (SSE) compliance requirement, the
user must transmit encryption information with each request for object storage to
encrypt all objects stored in a bucket without utilizing the default encryption
method.

According to the test results in Fig. 6, server-side encryption operates as
anticipated. However, only the IAM user indicated who has access to the bucket
may decrypt the file.

 ISSN 2549-7286 (online)

Indonesian Journal of Computer Science Vol. 11, No. 2, Ed. 2022 | page 423

H. Intelligent Tiering

Figure 7. Intelligent Tiering Show Result

The author attempts to upload our sample data in this section, and each files
placed on the bucket that would be assigned automatically by intelligent tiering as
we can see the result on the Fig 7.

This tiering might be useful if the user is unclear about the object's frequency of
access. Customers would like this sort of Tiered Storage. This functionality may be
activated when new system items are created. Using life-cycle policies, the
Customers may also shift the object manually. Unlike intelligent tiering, which can
run automatically, this life cycle policy will need more effort from the user, since
each policy must be set up and stated manually.

If customers are certain that their items will be consumed infrequently, the
Standard-IA storage class is recommended for the greatest cloud cost reductions.
Customers may enhance cloud savings and reallocate their time by letting the
bucket to choose the optimal tiers for each item and move them as needed. This is
undoubtedly the most helpful feature for customers.

I. Cost Efficiency

As we mentioned before, implementing intelligent tiering aims to reduce storage
costs by automatically transferring data to the most cost-effective access tier
without impacting performance or adding operational burden. This part evaluates
and calculates various cost estimates for all of the data in the bucket using both
traditional and intelligent tiering.

For the cost optimization analysis, the author makes several scenarios to find out
how much efficient the storage gateway in question:

• 1 terabyte of storage containing 1 hundred thousand objects is hosted by
the author.

• The amount of "hot" data (often accessed data), or the average object size, is
10MB.

• Monthly storage growth is anticipated to be 10%.
We have approximated the cost based on such situation.

Figure 8. Monthly Cost for next 12 Month

 ISSN 2549-7286 (online)

Indonesian Journal of Computer Science Vol. 11, No. 2, Ed. 2022 | page 424

Figure 9. Cumulative cost for 12 months

As shown in Fig 8 and Fig 9, all of our objects are in the tier bucket Standard. We
only give a broad review the benefits of intelligent tiering. The cost is roughly 1.8 X
lower per GB when intelligent -tiering promotes an object to the Intelligent-
Infrequent tier. Naturally, not all the items will be shifted to an uncommon tier.
This tier only contains items that have been inactive for 30 days. Additionally,
Glacier or Glacier Deep Archive, cost 5.8X and 20X less per GB than S3-Standard,
respectively, are not considered in this comparison.

We can observe from that graph that first-month costs with the new intelligent
tiering are higher depending on our amount of objects because of the one-time
object move fees. Intelligent Tiering often generates a return within 1-2 months.
Additionally, with our condition, the 12-month cumulative The Intelligent Tiering
results in savings of $82.89.

J. Delta Data (Diff Algorithm)

In this section, authors try to measure how effective Delta Data is in reducing file
size and bandwidth usage. To run this Xdelta script we use Linux’s crontab feature
which will run every hour we just need to put that script inside the crontab, so it
will generate a new delta data from our existing file and the storage gateway script
will handle the rest of it to sync up to the cloud.

Identifying an appropriate data set for statistical significance and appropriate
real-world applications was the first challenge we faced while attempting to
develop a delta benchmark. The most crucial characteristic of any benchmark for
delta algorithms is the presence of several instances of change. This implies that
both the magnitude of the changes reflected, and the files' size must vary
substantially. Large modifications to small files and minor modifications to large
files must be included, as well as minor modifications to small files and large
modifications to large files.

In addition, the benchmark should include a variety of formats, such as pure text,
pure object code, and pseudo text because Word processors create pseudo text, a
string of text with binary data inserted throughout, and rare line breaks. As word
computers, spreadsheets, and multimedia data grow more widespread, pseudo
text and binary forms are becoming more significant [16].

These types of data sets are present in GNU software. The Free Software
Foundation is responsible for making numerous software projects available in
updated forms. The test suite that the authors used consisted of two versions of

 ISSN 2549-7286 (online)

Indonesian Journal of Computer Science Vol. 11, No. 2, Ed. 2022 | page 425

GNU GCC, versions 9.4.0 and 9.5.0, as well as two versions of GNU Emacs, versions
28.1 and 27.1. With this version, any given file can have a large range of variations
from one revision to the next. The sizes of the files range from 0 to 200KB.

Table 6. Delta Algorithm Test Result

 Size Files
Count

Size Files
Count

GCC 548421211 94646 548761899 94878 124531017 77.3%

Emacs 243673061 6022 259158350 6587 70144984 72.9%

Please refer to TABLE VI above to understand the result we obtained from our

test. As we have mentioned earlier, for this benchmarking, we try to provide two
different files, GCC & Emacs then we create the Delta from those two different
versions. From our test, we were able to save a lot of bandwidth up to 77%+ per
our test by only uploading a delta file instead of us needing to upload every latest
file.

F. Conclusion

This Storage Gateway can be one of the solutions to Hybrid Cloud Storage.

Furthermore, utilizing the storage gateway with all the techniques we mentioned
before can be more secure and efficient and have seamless integration.

From the efficiency perspective, implementing the Diff algorithm into our
Storage Gateway can significantly reduce the file size. Since that algorithm can
compute the differences between two versions of a file and do some compression
on the diff file that only saves the part that has been changed, this diff algorithm
was proven can reduce a lot of our bandwidth up to 77%. Furthermore, once we
have the patch file from the diff algorithm, transfer acceleration will take over the
part and optimize the latency by finding the best route from the source to the
destination using an optimized path rather than a public route. This TA will handle
the data carefully, and this TA has up to 99% efficiency on the Latency Test and up
to 27% on the Write time test.

Then, from the security and cost perspective of implementing SSE, it can be an
additional safeguard to protect our data confidentiality when placed on the cloud.
And for cost efficiency, intelligent tiering successfully reduce the cost without
more effort to change the tiering manually. From our test scenario, this IA can
reduce the cost up to $82.89

For future works, authors will try to find the best combination of Xdelta with
another data reduction approach to add more efficiency to this concept.

 ISSN 2549-7286 (online)

Indonesian Journal of Computer Science Vol. 11, No. 2, Ed. 2022 | page 426

G. References

[1] I. Odun-Ayo, O. Ajayi, B. Akanle, and R. Ahuja, “An overview of data storage in cloud
computing,” in Proceedings - 2017 International Conference on Next Generation
Computing and Information Systems, ICNGCIS 2017, Nov. 2018, pp. 38–42. doi:
10.1109/ICNGCIS.2017.9.

[2] E. Rolloff, M. Diener, A. Carissimi, and P. Navaux, “High Performance Computing in
the cloud: Deployment, performance andcost efficiency,” Mar. 2012. doi:
10.1109/CBD.2015.40.

[3] A. Paul Rajan and S. Shanmugapriyaa, “Evolution of Cloud Storage as Cloud
Computing Infrastructure Service,” OSR Journal of Computer Engineering (IOSRJCE),
2012, doi: 10.1109/CEC.2011.45.

[4] C. Viana-Ferreira, A. Guerra, J. F. Silva, S. Matos, and C. Costa, “An Intelligent Cloud
Storage Gateway for Medical Imaging,” Jul. 2017, [Online]. Available:
http://arxiv.org/abs/1708.06334

[5] Y. Cui, M. Ruan, Z. Li, and E. Zhai, “HyCloud: Tweaking Hybrid Cloud Storage
Services for Cost-Efficient Filesystem Hosting,” IEEE/ACM Transactions on
Networking, 2020, [Online]. Available: https://github.com/iHyCloud/hycloud-
demo.

[6] J. Baron and S. Kotecha, “Amazon Web Services-AWS Storage Options Storage
Options in the AWS Cloud,” 2013. [Online]. Available:
http://aws.amazon.com/whitepapers/

[7] AWS, “Amazon Simple Storage Service User Guide.” 2019.
[8] C. M. Ruth Paul, “Experimenting with AWS Direct Connect using Chameleon,

ExoGENI, and Internet2 Cloud Connect,” in 2019 IEEE 27th International
Conference on Network Protocols (ICNP), Jan. 2019, pp. 1–651. doi: 10.1007/978-3-
319-33769-2.

[9] R. Sieger, S. Grob, and A. Schill, “SecCSIE: A Secure Cloud Storage Integrator
forEnterprises,” 2011 IEEE Conference on Commerce and Enterprise Computing978-
0-7695-4535-6/11 $26.00 © 2011 IEEEDOI 10.1109/CEC.2011.45252, 2012.

[10] J. Wang, L. Yang, H. Zhang, Z. Xu, and Y. Guo, “PROXY: A high cost-performance
cloud storagegateway,” 2015. doi: 10.1109/CloudCom.2012.6427549.

[11] I. Saeed, S. Baras, and H. Hajjdjab, “Security and Privacy of AWS S3 and Azure Blob
Storage Services,” 2006.

[12] V. Persico, A. Montieri, and A. Pescape, “On the Network Performance of Amazon
S3 Cloud-Storage Service,” in Proceedings - 2016 5th IEEE International Conference
on Cloud Networking, CloudNet 2016, Dec. 2016, pp. 113–118. doi:
10.1109/CloudNet.2016.16.

[13] Liu Shenling, Zhang Chunyung, and Chen Yujiao, “HASG: Security and Efficient
Frame for Accessing Cloud Storage,” China Communication, 2018.

[14] C. Gopinaath and C. Kiruthika, “A server side encryption for cloud storage with
federation sharing in hybrid cloud environment,” in Proceedings - 2017
International Conference on Technical Advancements in Computers and
Communication, ICTACC 2017, Oct. 2017, vol. 2017-October, pp. 128–131. doi:
10.1109/ICTACC.2017.41.

 ISSN 2549-7286 (online)

Indonesian Journal of Computer Science Vol. 11, No. 2, Ed. 2022 | page 427

[15] Q. Zhang et al., “DeltaCFS: Boosting Delta Sync for Cloud Storage Services by
Learning from NFS,” 2017.

[16] J. J. Hunt and W. F. Tichy, “Delta Algorithms: An Empirical Analysis,” ACM
Transactions on Software Engineering and Methodology, vol. 7, no. 2, 1998.

[17] J. M. Uc, B. J. Mogul, H.-P. Company, and K. Vo, “The VCDIFF generic differencing
and compression data format,” 2002.

[18] Wang Y, DeWitt DJ, and Cai JY, “X-Diff: An Effective Change Detection Algorithm for
XML Documents,” 2003.

[19] Y. S. Nugroho, H. Hata, and K. Matsumoto, “How different are different diff
algorithms in Git?,” Empirical Software Engineering, vol. 25, no. 1, pp. 790–823, Jan.
2020, doi: 10.1007/s10664-019-09772-z.

[20] A. Tridgell and P. Mackerras, “The rsync algorithm,” 1996. [Online]. Available:
http://cs.anu.edu.au/techreports/

[21] Dieter Jonathan, “ON BINARY DELTA ALGORITHMS,” 2009.
https://www.jdieter.net/posts/2009/11/06/on-binary-delta-algorithms/
(accessed Jun. 24, 2022).

[22] J. A. Nasyir, I. Winarno, and M. U. H. al Rasyid, “A Heterogeneous Hybrid Cloud
Storage Service Using Storage Gateway with Transfer Acceleration,” in
International Electronics Symposium 2021: Wireless Technologies and Intelligent
Systems for Better Human Lives, IES 2021 - Proceedings, 2021, pp. 185–189.

