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Cloud services have enabled various information system developments. In 
this paper, we explore the use of Amazon Sagemaker cloud services and AWS 
Data Exchange in disaster information systems. We proposed  cloud 
architecture for a disaster information system and found some of the 
datasets provided on AWS Data Exchange could be leveraged for such 
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A. Introduction 
Information is a crucial aspect in disaster management. Therefore, we 

need a good disaster information system. Various disaster information 
systems have been developed, including geographic information systems 
for disasters, disaster mitigation, post-disaster management, and 
others.[1]–[8] [9]–[20] 

As cloud computing continues to grow, many of these disaster 
information systems are hosted in the cloud. This can be utilized further by 
integrating information systems into other cloud services, such as storage, 
databases, machine learning, and others. In order to improve the 
capabilities of disaster information systems, machine learning can be 
utilized. [21], [22], [30], [31], [23]–[26], [26]–[29] 

In this research, we explore utilizing cloud services and machine 
learning to enhance disaster information systems and propose related 
cloud architecture. 

 
 
B. Research Method 

In this research, we explore cloud services and machine learning as 
shown in the table below.  

 
Table 1. Cloud Services 

Services Examples 

Compute 
EC2, Instance Compute, 
BareMetal, VM 

Storage S3, NVMe 
Database RDS, ADB 
Machine Learning Sagemaker, Collab 
  

 
Table 1 shows cloud services with examples. In this research, we will leverage 

AWS and its services to propose an architecture that can be utilized in the 
development of a disaster information system. 
 

C. Result and Discussion 
In determining the appropriate computing architecture, we need to 

look at the associated use-cases. One of the problems faced is the 
availability of datasets, the updates and its integration into information 
systems. 

By having relevant and credible datasets, we could do improve 
disaster information systems. Examining some data-related services in 
cloud, such as AWS Glue, Amazon EMR, Amazon SageMaker, Amazon 
QuickSight, and Amazon Athena, it is easier to get insights from disaster 
data.  

We could also leverage AWS Data Exchange makes it simple to 
exchange data in the cloud. We can find and subscribe to disaster-related 
data products, download data sets or copy them to Amazon S3 and analyze 
them with AWS’s analytics and machine learning services. A proposed 
architecture of such solution could be seen in Figure 1: 
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Figure 1. Automating the retrieval for new data set revisions [32] 
 

 
 

D. Conclusion 
The proposed architecture can be utilized for the development of 

disaster information systems. By integrating machine learning models, the 
information systems could be developed further. 
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