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A disaster robot is used for crucial rescue, observation, and exploration 
missions. In the case of implementing disaster robots in bad environmental 
situations, the robot must be equipped with appropriate sensors and good 
algorithms to carry out the expected movements. In this study, a neural 
network-based terrain classification that is applied to Raspberry using the 
IMU sensor as input is developed. Relatively low computational requirements 
can reduce the power needed to run terrain classification. By comparing data 
from the Accelerometer, Gyroscope, and combined Accelero-Gyro using the 
same neural network architecture, the tests were carried out in a not moving 
position, indoors, on asphalt, loose gravel, grass, and hard ground. In its 
implementation, the mobile robot runs over the field at a speed of about 0,5 
m/s and produces predictive data every 1,12s. The prediction results for 
online terrain classification are above 93% for each input tested. 
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A. Introduction 
The Indonesian archipelago is located on the "Ring of Fire," the confluence of 

three tectonic plates in the world, namely the Australian, Pacific, and Eurasian [1]. 
This area has a high potential for earthquakes, tsunamis, volcanic eruptions, and 
landslides [2]. The Meteorology, Climatology, and Geophysics Agency (BMKG) 
confirmed that Kalimantan Island is the only island in Indonesia with the lowest 
level of seismic activity [3].  

From active tectonic and volcanic activity data, it often occurs in several regions 
in Indonesia. This is evidenced by the fact that Indonesia's regions often have 
earthquakes and volcanic eruptions annually [3]. In this case, the impact caused by 
the earthquake was quite extensive and massive, such as the destruction of facilities 
and property and the loss of people's lives [2][4]. Active volcanoes also risk emitting 
toxic gases, hot clouds, cold lava, and lava [5]. The impact caused by lava is that it 
destroys everything in its path, and also, no living things are safe when a disaster 
occurs [4]. Efforts are needed so that areas hit by disasters can be evacuated 
immediately to ensure the safety of the affected population. 

Searching for victims, assessing the damaged situation, and planning rescue and 
recovery are important issues [1][6]. Uncertainty, danger, and limited availability of 
rescuers all affect the ability to save lives. Required robots or unmanned systems 
can be operated in disaster areas to help search for victims. Robot-type UAVs 
(Unmanned Aerial Vehicles) and UGVs (Unmanned Ground Vehicles) are very often 
used for search and rescue missions [7]. UAVs are used for area mapping missions 
because they can roam through the air. The UGV has a good ground cruising 
capability and is suitable for exploration and observation missions. 

Disaster robots usually still use manual control via teleoperated mode [7]. The 
user controls the robot remotely by using the visualization from the FPV camera to 
navigate the robot. This camera will not function optimally when faced with foggy, 
smoky conditions, heavy rain, dust, excess, or lack of light intensity. When the robot 
encounters a certain field, when it cannot be seen visually by the user, it will cause 
new problems. In the implementation, disaster robots need to be equipped with 
several supporting sensors such as GPS, Lidar, and IMU to carry out autonomous 
missions [8][9].  

In this case, researchers only focus on applying terrain classification algorithms 
to help disaster robot navigation. In several studies related to other classification 
terrains, many of them are implemented using several sound inputs [10], visual 
inputs [11], and also vibrations [12][13][14]. Of course, with different methods and 
different testing schemes. In implementing terrain classification cases, they use an 
offline classification or online classification approach [15][16][17].  

In the application of the robotic field, most of them use non-holonomic based. 
This control scheme is relatively easy and reliable when applied to fields that cannot 
be traversed by holonomic based. The most accessible and reliable application is the 
DDMR system [8][18][19]. In this study, researchers tested using inexpensive 
devices. The prototype disaster robot is based on a 4-wheels differential-driven 
mobile robot (DDMR) equipped with an Inertial Measurement Unit (IMU) sensor. 

The IMU used is BNO055 which can output accelerometer, gyroscope, and 
magnetometer data. In this case, the researcher only uses data from the 
accelerometer and gyroscope sensors to record vibrations on the robot when it 
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crosses the terrain. Researchers use a neural network implemented on the 
Raspberry Pi 4B to process vibration data in real-time. Using the same neural 
network architecture, researchers will compare the predictions of each input to be 
tested. The data used as input are the gyroscope, the accelerometer, and the gyro-
accelerometer combination. Terrain classification testing will be carried out in real-
time, which is called online terrain classification. The purpose of online terrain 
classification is to input from the actual robot disaster navigation system. The 
prediction results are expected to help the robot to determine the path that the 
robot can still pass. The robot will also be able to adjust the speed based on the type 
of terrain it travels to be more efficient, effective, and safe when carrying out 
observation and exploration missions. 

 
B. Research Method 

The research implementation can be described in the system design. The system 
design describes the entire process contained in the system, which can be shown in 
the following Figure 1. 

 

 
 

Figure 1. System Design 
 

Based on the design system in Figure 1, the explanation for each step is as 
follows: 

 
1. Training Phase 
1.1 IMU Data Acquisition (Training) 

A disaster robot prototype based on a 4-wheeled mobile robot, seen in Figure 2, 
was created to collect IMU data. This mobile robot has four wheels and four driving 
motors (PG36 DC Motor). Adapting from a non-holonomic based robot system with 
a DDMR (Differential Driven Mobile Robot) drive system. The size of the mobile 
robot is 374,5 x 608 x 277,7 mm. As for the serrated wheel, it has a diameter of 158 
mm and a thickness of 115 mm. Meanwhile, the weight of each wheel is 525 grams, 
and the total weight is 4.75 kg.  

This robot uses the Arduino Mega Board to accommodate the entire system. A 
BTN7960 motor driver drives each PG36 24V DC Motor. To drive this robot, connect 
the Bluetooth HC-05 to the Bluetooth RC Controller application on the Play Store. 
The robot is powered by 4 Lion 3.7V 3000mAH batteries installed in series. Mobile 
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robot is equipped with a 9-DOF Inertial Measurement Unit (IMU), which is the IMU 
BNO055 turning the sensor data from an accelerometer, gyroscope, and 
magnetometer into actual "3D space orientation". As for data from IMU BNO055, it 
is read by Arduino Uno, which will later send the data serially to the Raspberry Pi 
4B. A 5V 5A DC-DC Buck Converter powers this Raspberry. The power is obtained 
from 4 lion 3.7v 3000mAh batteries installed in series. 
 

 
 

Figure 2. Prototype disaster robot design 
 
As for the IMU position, it is on the top layer and right in the middle of the robot 

body. The IMU BNO055 has the following outputs: Absolute Orientation (Euler 
Vector, 100Hz), Absolute Orientation (Quaternion, 100Hz), Angular Velocity Vector 
(rad/s, 100Hz), Acceleration Vector (m/s2, 100Hz), Magnetic Field Strength Vector 
(uT, 20Hz), Linear Acceleration Vector (m/s2, 100Hz), Gravity Vector (m/s2, 100Hz) 
and Temperature (Celsius, 1Hz). However, in this study, we only used accelerometer 
and gyroscope data. 

Data acquisition was done on five different terrains and stop-moving condition, 
which can be seen in Figure 3, and are the following: 
 

 
 

Figure 3. Multiple terrains for IMU data acquisition 
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As for raw data samples, each is visualized in the graph below: 
 

 
 

Figure 4. Gyroscope and accelerometer data visualization for stop-moving 
conditions 

 
The graph in Figure 4 is a sample of raw data for stop-moving conditions. 

Ideally, for gyroscope data, the x-axis, y-axis, and z-axis are 0 rad/s, but in reality, 
some anomalies are read. In accelerometer data, the x-axis and y-axis are near 0. The 
z-axis is affected by gravity, so it is measured at 9,8 m/s2. 
 

 
 

Figure 5. Gyroscope and accelerometer data visualization for indoor floor 
terrain 

 
The graph in Figure 5 is a sample of raw data for indoor floor terrain. In this 

terrain test, the vibration is not too large. The characteristic of this terrain is that the 
surface is flat and quite slippery. So for gyroscope data, the y-axis and z-axis are in 
the amplitude range of -0.2 to 0.2. Meanwhile, the x-axis range is in the range above 
it. In the accelerometer data, the z-axis has the largest amplitude range from 0 to 20. 
The average amplitude range for the x and z axes is -8 to 8. 
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Figure 6. Gyroscope and accelerometer data visualization for asphalt terrain 
 

The graph in Figure 6 is a sample of raw data for asphalt terrain. A distinctive 
feature of this terrain is that the surface is uneven and quite rough. So for gyroscope 
data, the x, y, and z axes are, on average, in the amplitude range of -0.5 to 0.5. In 
accelerometer data, the average z-axis has an amplitude range from -10 to 25. The 
average amplitude range for the x and z axes is -10 to 10. 
 

 
 

Figure 7. Gyroscope and accelerometer data visualization for loose gravel 
terrain 

 
The graph in Figure 7 is a sample of raw data for loose gravel terrain. The 

characteristics of this terrain are that the surface is uneven and slippery, and the 
rocks wobble quickly when the robot passes. So for gyroscope data, the z-axis is in 
the amplitude range of -0.5 to 0.5. while the y-axis is in the range of -1 to 1, and the 
x-axis forms a large wave pattern. The amplitude range is in the range of -2 to 2. In 
accelerometer data, the average z-axis has an amplitude range from -5 to 20. The 
average amplitude range for the x and z axes is -10 to 10. 
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Figure 8. Gyroscope and accelerometer data visualization for grass terrain 
 

The graph in Figure 8 is a sample of raw data for grass terrain. The characteristic 
feature of this field is that the surface is relatively flat and the surface is soft enough 
to dampen vibrations. However, in some areas, there are rocks and bare grass. So 
for gyroscope data, the average z-axis is in the amplitude range of -0.2 to 0.2. 
Meanwhile, the x and y axes are in the amplitude range of -0.5 to 0.5. In 
accelerometer data, the average z-axis has an amplitude range from 5 to 15. The 
average amplitude range for the x and z axes is -5 to 5. 
 

 
 

Figure 9. Gyroscope and accelerometer data visualization for soil terrain 
 

The graph in Figure 9 is a sample of raw data for soil terrain. A distinctive 
feature of this terrain is that its surface is relatively flat and the surface is quite flat. 
However, in some areas, there are rocks. So for gyroscope data, the average z-axis is 
in the amplitude range of -0.4 to 0.4. In contrast, the x and y axes are in the amplitude 
range of -1 to 1. In accelerometer data, the z-axis has an average amplitude range 
from 0 to 25. The average amplitude range for the x and z axes is -10 to 10. 
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1.2 Terrains Dataset 
For saving terrains dataset, we use python and pyserial libraries. Which we then 

save in a file with the extension (.csv). Retrieval of datasets is carried out on each 
terrain as much as 60x. For every 1 dataset, 150 accelerometer and gyroscope data 
samples are obtained. The specifications of the IMU are 100Hz for the accelerometer 
and gyroscope, so in 1 dataset, it takes 1,5 seconds. The average speed of the robot 
when passing through the terrain is 0,5 m/s. 
 

 
 

Figure 10. Screenshot of loose gravel terrain raw data 
 

Figure 10 shows a snapshot of the raw loose gravel terrain data. The vibrations 
when the robot crosses the field are stored as a dataset. The data stored is in the 
form of sample sequences, gyroscope data (x-axis, y-axis, z-axis), and accelerometer 
data (x-axis, y-axis, z-axis). 
 
1.3 Feature Extraction Using FFT 

Feature extraction is helpful in identifying the most discriminatory 
characteristics in a signal [20]. It is recommended for feature extraction so that it is 
easier to use by machine learning or deep learning algorithms. The use of raw data 
often gives poor results due to high data rates and information redundancy when 
used for machine learning. The Fast Fourier Transform (FFT) algorithm transforms 
raw data (accelerometer and gyroscope) in the time domain into the frequency 
domain.  The FFT formula that we use is as follows: 

 
X(f) =  ∑ 𝑥𝑘 . 𝑒−𝑖𝑙∆𝜔𝑘                         (1) 

 
                       =  ∑ 𝑥𝑘. 𝑒−𝑖𝑙2𝜋𝑓𝑘                         (2) 

 

                       =  ∑ 𝑥𝑘. 𝑒
−𝑖𝑙𝑘2𝜋

𝑁⁄                         (3) 
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Where, 
𝑋 is the value of the transformation results in the frequency domain. 
𝑓 is frequency. 
𝑥𝑘 is sampling values to (-k) of the time domain. 
𝑙 is discrete frequency index. 
𝑘 is the time index. 
𝑘 is the time index. 

 
1.4 Training Using ANN 

Multi-Layer Perceptron classifiers, which feedforwards Artificial Neural 
Networks (ANNs), were applied in this research. These classifiers proved to apply 
to online classification tasks on similar projects. As for the dataset that we use for 
training the neural network model, it is shown in Table 1: 

 
Table 1. Terrain dataset 

 Types of Terrains 
Total  Not 

Moving 
Indoor 
Floor 

Asphalt 
Loose 
Gravel 

Grass Soil  

Dataset 7500 9000 9000 9000 9000 9000 52500 

 
The dataset obtained is 52500 for the total of the entire test. 80% of the dataset 

is used as training data, and the remaining 20% is used as testing data. As for 
training the NN model using Visual Studio Code software, we use several extensions 
and libraries such as Jupyter, Python 3.7.6, Tensorflow 2.1.0, NumPy, pandas, and 
matplotlib. The neural network architecture that we use is as follows: 
 

 
 

Figure 11. Neural network architecture for accelerometer-gyroscope input 
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The terrain classification architecture using accelero-gyro input is shown in 
Figure 11. The data that enters this ANN is fourier data that has been transformed 
with FFT. The total input is 768 (384 from gyroscope FFT data and 384 from 
accelerometer FFT data). So each axis gives each 128 FFT data. There are 32 hidden 
layers, and there are six classification outputs. The architecture above combines two 
inputs, so for training models that use only a gyroscope or accelerometer, only 384 
data is needed from one of the sensor inputs. So windowing for gyroscope or 
accelerometer input uses 384 FFT data. Meanwhile, the combine (gyro-accelero) 
uses 786 FFT data. 
 
2. Testing Phase 

The testing phase contains several similar steps, such as IMU data acquisition 
and feature extraction using FFT. The IMU data acquisition is slightly different from 
the training phase. In this phase, raw data from IMU will be sent directly to 
Raspberry and transformed using FFT. So that without the process of storing data 
earlier, it will be the input of the ANN. The ANN model is obtained from the training 
results for experimental testing. The online terrain classification process is executed 
in real-time from IMU sensor data.  

The robot will be tested on indoor floor terrain, asphalt, loose gravel, grass, and 
soil when the robot stops moving. The online terrain classification program is 
executed, and the robot will be remotely forwarded straight through the testing 
terrain. The robot will be tested when the situation stops in each terrain in the stop-
moving test. As for after testing, an evaluation will be carried out regarding the 
predicted results obtained. 
 
C. Result and Discussion 

As for this research, online terrain classification and experimental tests were 
carried out on a mobile robot. The hardware specifications used in this experimental 
test can be seen in Table 2. 
 

Table 2. Hardware specifications used for experimental testing 
Hardware Description 

Laptop Lenovo Legion 5 15ITH6H 
Processor Intel(R) Core(TM) i7-11800H CPU @ 4.60GHz 

RAM 2x 8GB SO-DIMM DDR4-3200 
HDD 512GB SSD M.2 2280 PCIe 4.0x4 NVMe 

Xiaomi Pocophone F1 Wifi Hotspot 
Raspberry Pi 4B SBC/Mini PC for online terrain classification 

Arduino Uno Microcontroller for reading IMU data 
Adafruit BNO055 IMU sensor 

OS and Software used in 
experimental testing 

Windows 11 Home 
VNC Viewer 

Raspberry Pi OS (Legacy) 
Python 3.7.6 

Tensorflow 2.1.0 

 
In the online terrain classification experimental test, Raspberry is first turned 

on. In this case, the position of Raspberry is mounted on the robot. The Raspberry 
runs headless with the Raspberry interface displayed on the laptop. This process 
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requires the same network and hotspot connection connected to the Raspberry and 
the laptop. Then the online terrain classification program is run on the Raspberry, 
and the robot will run forward on each terrain. This test compares predictions from 
online terrain classification using different inputs on the same neural network 
architecture. The inputs being compared are the accelerometer, the gyroscope, and 
the accelero-gyro combination. 
 

 
 

Figure 12. Online terrain classification testing on several terrains 
 

Figure 12 shows the online terrain classification test on several terrains. The 
tests were carried out on the surface of the indoor floor, asphalt, grass, soil/ground, 
loose gravel, and stopped/not moving. Each terrain will be tested with 
accelerometer input, the gyroscope, and the accelero-gyro combination. Each online 
terrain classification test on each terrain will take 30 prediction data. Six prediction 
results are taken for each terrain for testing, not moving conditions. 

 

 
 

Figure 13. Online terrain classification prediction on grass terrain 
 

Figure 13 shows the online terrain classification prediction on grass terrain. The 
terrain classification program is stored on raspberry. Then run it on the raspberry 
os terminal. This program runs using Python 3.7.6, Tensorflow 2.1.0, and several 
required libraries. The photo above is just a snapshot of the entire test. Regarding 
the overall test results are shown in the tables below. 
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Table 3. Online terrain classification testing using accelerometer as input 

  
Terrain Input (Accelerometer) 

Not 
Moving 

Indoor 
Floor 

Asphalt 
Loose 
Gravel 

Grass Soil  

P
re

d
ic

te
d

 T
e

rr
a

in
s 

Not Moving 
30 

(100%) 
          

Indoor Floor   
27 

(90%) 
      

 2 
(6,66%) 

Asphalt   
3 

(9,99%) 
28 

(93,3%) 
1 

(3,33%)  
    

Loose Gravel      29 
(96,6%) 

 1 
(3,33%)  

1 
(3,33%)  

Grass        
28 

(93,3%) 
  

Soil      
2 

(6,66%) 
 1 

(3,33%)  
27 

(90%) 

 
Table 3 shows the results of online terrain classification testing using the 

accelerometer as input. A pretty good prediction is obtained by using 384 
accelerometer sample data (128 data for each axis) for every 1x prediction. It takes 
an interval of 1,12s for each prediction generated in this test. The best prediction is 
when the robot is not moving (100% accuracy) and loose gravel terrain (96,6% 
accuracy). In contrast, predictions for indoor floor terrain and soil/ground terrain 
have the worst accuracy, namely 90%. 

 
Table 4. Online terrain classification testing using gyroscope as input 

  
Terrain Input (Gyroscope) 

Not 
Moving 

Indoor 
Floor 

Asphalt 
Loose 
Gravel 

Grass Soil  

P
re

d
ic

te
d

 T
e

rr
a

in
s 

Not Moving 
30 

(100%) 
          

Indoor Floor   
28 

(93,3%) 
       

Asphalt   
2 

(6,66%) 
29 

(96,6%) 
1 

(3,33%)  
  

 2 
(6,66%) 

Loose Gravel      29 
(96,6%) 

   

Grass        
30 

(100%) 
  

Soil      
1 

(3,33%)  
  28 

(93,3%) 

 
Table 4 shows the results of online terrain classification testing using the 

gyroscope as input. A pretty good prediction is obtained by using 384 gyro sample 
data (128 data for each axis) for every 1x prediction. It takes an interval of 1,12s for 
each prediction generated in this test. The best prediction is when the robot is not 
moving (100% accuracy) and on grass terrain (100% accuracy). In contrast, 
predictions for indoor floor terrain and ground terrain have the worst accuracy, 
namely 93,3%. 
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Table 5. Online terrain classification testing using accelero-gyro as input 

  
Terrain Input (Accelero-Gyro) 

Not 
Moving 

Indoor 
Floor 

Asphalt 
Loose 
Gravel 

Grass Soil  

P
re

d
ic

te
d

 T
e

rr
a

in
s 

Not Moving 
30 

(100%) 
          

Indoor Floor   
29 

(96,6%) 
       

Asphalt   
1 

(3,33%)  
27 

(90%) 
   

 1 
(3,33%)  

Loose Gravel     
1 

(3,33%)  
30 

(100%) 
 3 

(9,99%) 
1 

(3,33%)  

Grass        
27 

(90%) 
  

Soil      
2 

(6,66%) 
  28 

(93,3%) 

 
Table 5 shows the results of online terrain classification testing using the 

accelero-gyro as input. A pretty good prediction is obtained using 384 
accelerometer sample data (128 data for each axis) and 384 gyroscope sample data 
(128 data for each axis) for every 1x prediction. It takes an interval of 1,12s for each 
prediction generated in this test. The best prediction is when the robot is not moving 
(100% accuracy) and loose gravel terrain (100% accuracy). In contrast, predictions 
for asphalt terrain and grass terrain have the worst accuracy, namely 90%. 
 

 
 

Figure 14. Comparison chart of online terrain classification using neural network 
under different inputs. 

 
Figure 14 shows the comparison chart of online terrain classification under 

different inputs. Of all the input data tested, the time interval needed to generate 
predictions is the same, namely 1,12s for each prediction. The average accuracy for 
each input is the accelerometer with an accuracy of 93.86%, gyroscope with an 
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accuracy of 96.63%, and accelero-gyro with an accuracy of 94.98%. The gyroscope 
obtains the best results as input. 

 
D. Conclusion 

This study proposes an online terrain classification using a neural network 
vibration-based method for disaster robots. Compared to existing terrain 
classification studies, using an IMU sensor does not require a high-spec PC and high 
power. It is more resistant to disturbances in the outdoor environment (e.g., dust, 
light intensity, and fog). The average time for the system to run terrain classification 
online using a neural network is estimated to be 1,12s. From the input data that has 
been tested (Accelerometer, Gyroscope, and Accelerometer-Gyroscope), the best 
accuracy is obtained by the Gyro input (accuracy of 96,63%). These results are 
considered sufficient to be applied to the disaster robot for the actual mission. In 
future research, we will apply terrain classification to better disaster robots. The 
current robot is not robust enough when applied to a real mission. The researcher 
will also compare terrain classification using other time series forecasting 
algorithms such as Autoregressive Integrated Moving Average (ARIMA) and Long 
Short Term Memory (LSTM). 
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