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Testing	 is	 the	 major	 means	 of	 verifying	 and	 validating	 software.	 It	 is	 a	
repetitive	 and	 time-consuming	 activity.	 Testing	 is	 neglected	 because	 of	 its	
high	cost	and	the	fact	that	 it	does	not	add	functionality	to	the	system.	As	a	
result,	 many	 programmers	 don't	 write	 tests.	 To	 remedy	 this,	 some	
researcher	proposed	automatic	test	generation.	Test	generation	is	a	solution	
that	reduces	workload	and	increases	productivity.	In	this	paper,	we	propose	
a	 test	 data	 generation	 approach	 for	 unit	 tests	 in	 dynamically	 typed	
languages.	Our	approach	is	based	on	the	analysis	and	decomposition	of	the	
AST	(Abstract	Syntax	Tree)	obtained	when	compiling	the	source	code	of	the	
method	under	 test.	We	validate	 this	 approach	 in	Pharo	 a	 real	 system.	The	
results	on	three	systems	show	the	effectiveness	of	the	approach.	
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A. Introduction	
Testing	 enables	 developers	 to	 be	 sure	 that	 software	 functionalities	 comply	

with	 customer	 expectations	 and	 are	 bug-free.	 It	 consists	 of	 analyzing	 a	 program	
with	the	intention	of	detecting	anomalies		[1].	According	to	MEYER	Bertrand	in	[2],	
a	software	test	is	carried	out	to	show	the	presence	of	one	or	more	bugs,	and	never	
their	 absence.	This	 stage	 takes	up	around	40%	 to	50%	of	 software	development	
effort,	and	a	 third	of	 total	project	 time	 [3].	 In	addition,	 this	activity	 is	 sometimes	
responsible	 for	 introducing	 errors	 into	 the	 software	 source	 code	 [1].	 To	 address	
these	problems,	some	authors	have	proposed	test	generation.	A	test	generator	is	a	
tool	 that	 helps	 developers	 produce	 software	 test	 data.	 It	 must	 be	 general	 and	
generate	data	that	corresponds	to	the	chosen	criteria	(coverage,	branching...).	The	
language	 used	 to	 write	 the	 software	 strongly	 influences	 these	 solutions.	 Today,	
dynamic	 typing	 languages	 are	 gaining	 ground	 in	 the	 software	 industry	 [4].	
Generating	reliable	test	data	in	these	languages	is	a	real	challenge,	due	to	the	lack	
of	information	on	variable	types.	Strategies	implemented	to	automate	the	unit	test	
data	generation	have	their	limitations.		

In	this	paper,	we	propose	a	method	for	semi-automatic	generation	of	unit	test	
data	for	dynamically	typed	languages.	It	is	based	on	analysis	and	decomposition	of	
the	AST	to	generate	test	values.		

The	 rest	 of	 the	 article	 is	 organized	 as	 follows:	 2:	 unit	 test	 generation.	 	 3:	
Proposed	 approach.	 	 4:	 Results	 and	 discussions.	 5:	 Threats	 to	 validity.	 6:	
Conclusion.	
	
B. Unit	test	generation	

Software	testing	is	the	process	of	analyzing	a	program	with	the	intention	of	
detecting	 anomalies.	 It	 ensures	 that	 the	 software	 meets	 the	 specifications.	 [5].	
Testing	takes	place	at	different	levels	of	granularity.	We	will	focus	on	unit	testing.	
In	the	literature,	we	identify	two	approaches	to	unit	testing:	static	and	dynamic.	

In	 the	 static	 approach,	 the	 program	 is	 not	 executed.	 Static	 analysis	 of	 the	
code,	 design	documents	 and	 algorithms	 are	 used	 to	 check	 for	 errors	 and	 ensure	
that	 the	 program	 is	 running	 correctly.	 [1].	 With	 the	 dynamic	 approach,	 the	
program	is	executed.	In	this	case,	input	data	is	sent	and	the	results	are	compared	
with	what	 is	 expected	 to	 detect	 errors.	 In	 this	 article,	 we	 focus	 on	 the	 dynamic	
testing	approach.	

Test	data	generation	involves	 identifying	and	selecting	input	data	that	meet	
certain	 criteria	 [6].	 Many	 techniques	 have	 been	 developed	 in	 the	 literature	 to	
automatically	 generate	 this	 data	 for	 unit	 tests	 [7].	 We	 identify	 three	 ways	 of	
generating	data	for	unit	testing.	We	have	random	generation,	static	generation	and	
dynamic	generation.	

- Random	test	data	generation	:	is	a	technique	that	generates	data	according	
to	requirements,	specifications	or	other	conditions	defined	by	the	tester.	
It	 selects	 test	 data	 at	 random	 from	 the	 set	 of	 all	 possible	 inputs	 [8].	
Random	generation	methods	include	Adaptive	Random	(AR)	[9]Feedback	
Directed	Random(FDR)	[10].	One	of	the	limitations	of	these	techniques	is	
the	 invalid	 domain:	 there	 is	 no	 guarantee	 that	 the	 values	 generated	 as	
input	to	a	program	under	test	will	be	accurate.	The	data	generated	may	be	
too	close	or	too	far	from	the	input.		
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- Static	test	data	generation	technique:	this	is	a	form	of	test	data	generation	
without	 actually	 running	 the	 software.	 It	 relies	 on	 requirements	
documents,	 software	 source	 code	 and	 design	 schemas	 to	 generate	 data	
either	manually	 or	 automatically.	 [11].	 The	 static	 approach	 to	 test	 data	
generation	 begins	 by	 generating	 a	 Control	 Flow	 Graph	 (CFG).	 	 	 These	
include	symbolic	execution	and	domain	reduction.	The	main	limitation	is	
that,	in	the	case	of	a	loop	with	a	variable	number	of	iterations,	we	end	up	
with	 an	 infeasible	 path.	 It	 is	 therefore	 difficult	 to	 solve	 a	 problem	
described	in	the	form	of	constraint	system,	where	the	conditions	required	
to	traverse	a	path	do	not	exist.	

- Dynamic	 test	 data	 generation	 technique:	 Dynamic	 test	 data	 generation	 is	
based	 on	 the	 analysis	 of	 actual	 SUT	 execution.	 In	 contrast	 to	 the	 static	
generation	 approach,	 this	 approach	 consists	 of	 executing	 the	 system	
under	test	on	the	basis	of	concrete	data	supplied	by	the	user.	 Instead	of	
using	variable	substitution,	it	executes	the	system	under	test	with	certain	
inputs,	 possibly	 chosen	 at	 random.	 It	 is	 not	 bounded	 like	 symbolic	
execution.	The	behavior	of	the	SUT	during	its	analysis	can	reveal	whether	
the	path	taken	is	the	right	one	or	not.	If	the	path	taken	is	not	the	right	one,	
backtracking	is	used	to	find	the	node	where	the	flow	took	the	wrong	path.	
These	 techniques	 include	 intelligent	 approach	 [12]	 search-based	
approach	[13].		

In	 practice,	 static	 generation	 may	 be	 combined	 with	 symbolic	 execution,	
dynamic	 generation	 and/or	 concrete	 execution	 to	 generate	 test	 data.	 This	
combination	is	called	concolic	(conc(rete+symb)olic)	[14].	

Automatic	 generation	 of	 unit	 test	 data	 for	 dynamically	 typed	 languages	
presents	 certain	 challenges.	 The	 lack	 of	 type	 information	 is	 a	 major	 obstacle	 to	
automation.	To	circumvent	this	problem,	approaches	have	been	proposed	by	some	
researchers	 to	 obtain	 the	 types	 of	 variables	 in	 a	 program	 written	 in	 these	
languages.	 These	 approaches	 include:	 Annotation	 of	 methods	 and	 variables	 and	
Type	 Inference	 [11].	 Stephan	 L.	 in	 [4]	 	 and	 Ivan	 E.	 in	 [11]	 presented	 in	 their	
respective	 works	 the	 use	 of	 method	 and	 variable	 annotation	 as	 a	 means	 of	
indicating	the	types	of	variables	used,	in	order	to	automate	the	test	data	generation	
process.	 With	 type	 inference,	 to	 deduce	 the	 variable	 type	 at	 compile	 time,	 the	
program	must	contain	at	least	some	static	type	annotations	or	a	partial	type.	From	
this	 point	 onwards,	 for	 a	 program	 that	 contains	 no	 annotations,	 it	 will	 be	 very	
difficult	to	deduce	variable	types.	

We	 introduce	 here	 some	 tools	 for	 automatically	 generating	 unit	 test	 data	
include.	 	 Pyngui	 [4]	 is	 an	 automatic	 unit	 test	 generation	 tool	 for	 the	 Python	
language.	As	 limitations,	 it	 does	not	 consider	 field	declarations,	 assignments	 and	
collections	 (arrays,	 lists,	 dictionaries).	 RuTeG	 is	 a	 test	 generator	 for	 producing	
tests	 for	 the	 Ruby	 language	 [15].	 However,	 this	 tool	 only	 generates	 simple	 test	
cases.	It	is	up	to	the	user	to	write	the	specific	code	to	generate	the	data.	On	top	of	
this,	using	a	search-based	approach	is	very	resource-intensive.	SymJS	is	a	tool	for	
automating	 unit	 tests	 for	 the	 JavaScript	 language	 [16].	 However,	 this	 tool	 is	 not	
fully	automatic,	as	the	user	must	write	code	snippets	in	the	form	of	annotations	to	
provide	information	on	the	types	of	variables	used	in	the	target	program,	in	order	
to	 help	 the	 tool	 generate	 the	 data	 that	 will	 satisfy	 the	 evaluation	 criteria.	 In	
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addition,	 this	 tool	 does	 not	 allow	 test	 data	 to	 be	 generated	 at	 API	 (Application	
Programming	Interface)	scale.	
	
C. Proposed	Approach	

Figure	 1	 shows	 the	 architecture	 of	 our	 approach.	 As	 input	 (1),	 we	 have	 a	
method	under	test.	The	method	is	then	analyzed	(2)	by	an	analyzer	that	provides	
probable	variables	types.	Then	test	values	are	randomly	generated	(3).	In	(4),	we	
make	proposals	to	the	tester	to	validate	the	generated	data.	If	he	validates	the	data,	
we	rebuild	or	recompose	the	method	parameters	with	the	new	values	(5).	Finally,	
in	(6)	we	generate	the	test	method.	

	
Figure1	.	AuGenDa	Architecture	

	
As	 shown	 in	 Figure	 1,	 the	 approach	 is	 divided	 into	 two	 main	 stages:	 the	

analyzer	and	the	generator.	
Analyzer:	This	component	analyzes	the	program,	extracting	information	that	

will	be	used	to	generate	 test	data.	Lexical	analysis	consists	 in	breaking	down	the	
method	into	several	lexical	elements.	Each	element	is	called	a	token.	All	tokens	are	
analyzed	according	to	the	following	categories:	punctuation,	keywords,	operators,	
literals	and	identifiers.	Identifiers,	for	example,	contain	the	names	of	variables	and	
functions.	Next,	we	perform	a	syntactic	analysis	to	reorganize	the	tokens	according	
to	 the	 above-mentioned	 categories.	 An	 abstract	 syntax	 tree	 is	 then	 created.	 The	
Abstract	 Syntax	 Tree	 (AST)	 is	 used	 to	 retrieve	 the	 program's	 constants	 and	
variables,	 and	 the	 relationships	 between	 these	 tokens.	 In	 effect,	 these	 are	 the	
leaves	 of	 the	AST.	 For	 each	 identified	 variable,	 an	 oracle	 returns	 the	 type	 of	 the	
current	variable.	At	the	end	of	this	step,	we'll	have	information	on	the	constructors,	
methods	 and	 arguments	 used	 in	 the	 program,	 as	 well	 as	 the	 various	 paths	 and	
conditions	used.	

The	generator:	The	generator	produces	 the	data	 that	will	be	 transmitted	as	
input	 arguments	 to	 the	 methods.	 The	 real	 challenge	 here	 is	 to	 find	 values	 that	
match	 the	 user's	 requirements.	 To	 do	 this,	 once	 we	 have	 information	 on	 the	
constructors	 and	 variables	 used	 in	 a	 method,	 we'll	 randomly	 generate	 the	 data	
types	 that	 will	 satisfy	 the	 conditions	 set	 as	 input	 and	 compare	 them	 with	 the	
output.		
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The	approach	is	implemented	by	the	algorithms	below	:	
	
Input	:	M	(a	Method	)	
Ouput	:	Tm	(	test	Data)	
Declaration	:	L	
Begin	
				switch	kind	(M)	
								Getter		:TestGetter(M)		
								Setter		:	TestSetter	(M)		 	 	 	
								Other		:	TestMethod(M)	
END	

Algorithm	AuGenDa	
	
This	is	the	main	algorithm.	It	takes	a	method	as	input	and	returns	test	data	as	

output.	 We	 know	 that	 there	 are	 several	 types	 of	 method:	 getters,	 setters	 and	
normal	methods.	Once	we've	received	the	method	to	be	tested	as	input,	we	start	by	
checking	the	type	of	the	method.	Generation	will	be	based	on	the	method's	type.	

	
Input	 :	M	(a	Method)	 	
Output	 :	Tm	(test	Data)	 	
Declaration	:	 Param	 (parameters	list	)	
	 	 class	(M	class)	
	 	 L	(instance	variable	list)	
	 	 LT	(values	list)	 	 	
	 	 NP	 	 	 	
	 	 NPARAM	(new	parameters	generated)	
Begin	
				Param	<-	getParam	(M)	
				class	<-	getClass(M)	
				For	each	p	in	Param	do	:	
																				L	<-decompose	(	p	)	
	 								LT	<-mutate	(L)	
	 								NP	<-compose	(	class,	LT)	
	 								NPARAM	<-	add	(NP)	
			EndFor	
			generateTestData	(NPARAM,	class		
	End	

Algorithm	TestMethod	
	
This	algorithm	takes	a	method	as	input.	First,	we	retrieve	the	parameters	of	

the	method	to	be	 tested.	For	each	parameter	(input),	we'll	break	 it	down	 into	 its	
basic	 type	 (instance	 variable).	 Once	we've	 decomposed	 all	 the	 parameters,	we'll	
mutate	them.	Mutation	here	consists	in	randomly	generating	data	according	to	the	
base	 type	obtained	 in	 the	decomposition	 step.	Then,	 using	 the	 compose	method,	
we'll	recompose	the	parameters	received	as	input	to	the	method,	this	time	with	the	
generated	data	to	form	a	new	object.	Then,	we'll	call	the	generateTestData	method,	
which	will	take	the	generated	data	as	input	and	write	the	test	method.	

	
Input	 :	p	(an	object)	
Ouput	:	L	(object	list)	
Declaration	 :NP	
Begin	
			p	isLitteral	ifTrue	:	NP	add	p	
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																										ifFalse	:	NP	adds	[each	e	in	p.instancevariables	:	decompose(e)]	
	return	NP	
	End	

Algorithm	Decompose	
	
The	Decompose	algorithm	provides	variables	with	a	basic	type.	Let's	suppose	

that	 in	 the	 main	 algorithm,	 we	 receive	 as	 input	 a	 method	 that	 will	 take	 as	
parameter	 a	 person	 (surname,	 first	 name	 and	 date	 of	 birth)	 to	 generate,	 for	
example,	 the	price	of	a	ticket	 for	a	trip	to	a	travel	agency.	The	aim	here	is	to	test	
this	method.	The	method	takes	as	 input	a	person	with	a	surname,	first	name	and	
date	of	birth.	 In	TestMethod,	we'll	retrieve	the	parameters	(last	name,	 first	name	
and	date	of	birth).	For	each	element	in	the	parameter	list,	we'll	decompose	it.	As	a	
result,	we'll	have	a	String	for	the	name,	another	String	for	the	first	name	and	a	Date	
for	dateBirth.	 From	 there,	 it's	 easy	 for	us	 to	 generate	 the	 random	data	 for	 these	
parameters	by	calling	the	mutate	method.	Once	that's	done,	we'll	compose	a	new	
object	with	the	newly	generated	data	and,	finally,	generate	a	test	method	by	calling	
generateTestData.	

	
	Input	 :	L	(	a	list	of	instance	variables)	
	Ouput	:	listOfValue	(	 generated	values)	
	Declaration	:	listOfValue	
	Begin	
				For		 i	=1	to	length(L)	do	
								listOfValue	(i)<-L(i	)	atRandom	
				endFor	
				return		listOfValue	
		End	

Algorithm	Mutate	
	
As	 mentioned	 above,	 the	 Mutate	 algorithm	 takes	 as	 input	 a	 list	 of	 atomic	

parameters	 (an	 integer,	 a	 string,	 a	date,	 etc.).	 For	 each	parameter,	 it	 generates	 a	
random	 value.	 Finally,	 it	 returns	 a	 list	 of	 the	 same	 length	with	 newly	 generated	
values.	

	
	Input	 :	class	(a	class)	
	listOfValue	(generated	values)	
	Ouput	:NP	(new	parameters)	
	Declaration	:NP	
	Begin	
							NP<-instantiate	class	with	listOfValue.	
							return	NP	
	End	

Algorithm	Compose	
	
The	 Compose	 algorithm	 will	 allow	 us	 to	 reconstruct	 test	 data	 from	 the	

generated	values.	We	generate	the	test	data	with	the	generateTestData	method.		
	
Input	:	Param	(parameters)	
															class	(	the	class	of	the	Method)	
	Ouput	:	Tm	(data)		
	Declaration	:	newObject,	(a	class	instance	)	
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	Begin	
							newObject<-instantiate	a	class		object	with	Param	
	return	newObject		
End	

Algorithm	generateTestData	
	
The	 generateTestCase	 algorithm	 is	 used	 to	 write	 the	 unit	 test	 with	 the	

currently	 generated	 values	 without	 constraints.	 This	 algorithm	 uses	 the	 values	
generated	in	the	previous	step.		

	
	Input	 :newObject		 	
	Ouput	:	testCase	
	Begin	
			System.AllMethods.Add<-	TestClass.Method(		
				self	assert:	Class.Method(Object)	equals:	newObject	)	
	End	

Algorithm	GenerateTestCase	
	
	

D. Results	and	discussion	
In	 this	 section,	we	empirically	evaluate	our	data	generation	approach	using	a	

realistic	case	study.		Our	evaluation	aims	to	answer	the	following	questions:	RQ1:	
Does	 our	 approach	 generate	 data?	 	 Question	 1	 asks	 whether	 our	 approach	 can	
generate	 data.	 As	 in	 the	 case	 of	 tests,	 there	 are	 three	 possibilities:	 the	 method	
produces	nothing,	the	method	produces	erroneous	data	and	the	method	produces	
an	 expected	 result.	To	do	 this,	we're	 going	 to	 generate	 several	different	 types	of	
data	 and	 then	 analyze	 the	 results.	RQ2:	 Do	 our	 approaches	 generate	 data	 in	 an	
acceptable	 time?	 Since	 the	 approach	 uses	 a	 random	 generator,	 is	 the	 data	
produced	in	an	acceptable	time?	in	other	words,	doesn't	the	developer	waste	a	lot	
of	 time	 waiting?	RQ3:	 Can	 our	 approach	 generate	 data	 that	 are	 both	 valid	 and	
representative?	 Question	 3	 aims	 to	 determine	 whether	 our	 approach	 produces	
suitable	data.	Given	that	the	approach	applies	no	validity	constraints,	does	the	data	
generated	by	the	approach	meet	the	validity	requirement?		

We	 have	 implemented	 our	 approach	 in	 Pharo,	 a	 dynamically	 typed	 object-
oriented	 programming	 language	 licensed	 by	 MIT.	 Inspired	 by	 Smalltalk,	 Pharo	
offers	 a	 simple-to-use,	 stable,	 robust,	 reflexive	 and	 immersive	 environment.	 The	
project's	 source	 code	 is	 available	 at	
http://smalltalkhub.com/mc/FaouziElMansour/AuGenDa/main.	 We	 carried	 out	
our	 experiments	 with	 Pharo	 version	 9.0.0	 on	 a	 standard	 personal	 computer	
processor	core	i5-2540M	with	2.60x4	GHz	frequency,	06	GB	RAM	running	on	64-
bit	Ubuntu	18.04.5	LTS.		

For	 RQ1,	 we	 chose	 three	 Pharo	 packages.	 We	 generated	 test	 data	 for	 each	
method	in	the	package	

	
Table	1.	Test	data	generation	

Package	 #methods	 #success	
AST-Core	 1	422	 1	413	
Kernel	 5	022	 4	987	
Iceberg	 1	588	 1	547	
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RQ1	:	Table	1	shows	that	the	approach	generates	test	data	in	98,94%	of	cases.	

For	 the	 cases	 that	 failed,	 we	 note	 that	 these	 are	 methods	 specific	 to	 the	 Pharo	
language.	 These	 methods	 are	 traits	 and	 extension	 methods.	 These	 two	 types	 of	
methods	manipulate	objects	that	are	not	of	the	same	class	as	the	one	in	which	they	
are	 implemented.	This	 indicates	that	our	methods	work	for	general	rules	but	not	
for	specific	cases,	and	therefore	need	to	be	adapted	to	each	language.		

The	answer	to	RQ1	is	that	our	approach	generates	test	data.	However,	it	needs	
to	be	specialized	for	language-specific	techniques.	

	
Table	2.	Execution	times	

Packages	 #total	methods	 #	total	times	 min	 max	 mean	
AST-Core	 1	422	 79	632	 0	 2	348	 56	
Kernel	 5	022	 431	892	 0	 4	233	 86	
Iceberg	 1	588	 68	284	 0	 3	277	 43	

	
RQ2:	for	RQ2	we	estimated	the	time	taken	to	generate	each	data	item	in	ms.	We	

used	the	utility	provided	by	Pharo	to	monitor	the	time	per	method.	In	Pharo	stops	
at	primitive	calls	or	calls	that	are	too	fast	to	be	benchmarked	(~	<	3ms).	We	have	
found	 that	 for	many	methods,	 the	 time	 required	 is	 below	 the	 3ms	 threshold.	 To	
eliminate	this	difficulty,	we	 launched	profiling	on	all	 the	methods	 in	the	package.	
Table	2	present	the	results.		According	to	these	results,	the	minimum	time	is	under	
the	threshold	of	3ms;	 	and	the	maximum	time	is	4233ms	for	the	experiment.	The	
average,	which	 is	a	parameter	 that	 summarizes	 these	data,	 is	 respectively	56	 for	
AST-Core,	 86	 for	 Kernel	 and	 43	 for	 Iceberg.	 These	 average	 times	 is	 obtained	 by	
dividing	the	total	time	by	the	number	of	data	items	generated.	 	We	conclude	that	
this	time	is	reasonable	for	data	that	needs	to	be	validated	by	a	human	being.	

The	 answer	 to	 RQ2	 is	 that	 the	 approach	 generates	 data	within	 a	 reasonable	
time.	 For	 complex	 systems,	 parallelization	 can	 be	 envisaged.	 Similarly,	 we	 can	
generate	data	in	advance	as	soon	as	the	method	is	compiled.		

RQ3:	Can	our	approach	generate	data	that	are	both	valid	and	representative?	
Question	3	aims	to	determine	whether	our	approach	produces	suitable	data.	Given	
the	 approach	 applies	 no	 validity	 constraints,	 does	 the	 data	 generated	 by	 the	
approach	meet	the	validity	requirement.	

This	research	question	concerns	the	representativeness	and	validity	of	the	data	
generated.	 For	 this	 we	 required	 3	 experts.	 We	 randomly	 selected	 300	 methods	
from	our	experiments;	 for	each	package	we	had	100	generated	data.	Each	expert	
was	given	these	300	generated	data	to	examine.	They	were	asked	to	comment	on	
the	validity	and	representativeness	of	the	data.	The	results	are	shown	in	Table	3.	

	
Table	3.	Experts	evaluations	

	 Valid	 Representativeness	
yes	 No	 None	 Little	 medium	 Quite	

Expert	1	 236	 64	 64	 27	 186	 23	
Expert	2	 278	 22	 22	 69	 197	 12	
Expert	3	 227	 73	 73	 31	 169	 27	

	
According	to	the	experts'	judgement	in	Table	3,	the	data	generated	are	82,33%	

valid	and,	for	the	most	part,	fairly	representative.		
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The	 answer	 to	 RQ3	 is	 that	 our	 approach	 generates	 valid	 and	 representative	
data.		

In	short,	we	have	demonstrated	the	feasibility	of	the	proposed	approach	and	its	
effectiveness.	The	next	section	presents	the	threats	to	validity.	
	
E. Threats	to	validity	

The	results	of	our	empirical	experiment	are	subject	to	threats	of	validity.	The	
conclusions	 drawn	 and	 the	 validity	 of	 the	 data	 from	 the	 approach	 and	
implementation	are	 the	most	 relevant	 aspects	of	 validity	 for	our	 case	 study.	The	
following	notable	threats	are	listed:	

1.	 Validity	 of	 the	 approach.	 We	 carried	 out	 the	 analysis	 on	 a	 single	
programming	 language	 -	 this	 threatens	 the	 general	 validity	 of	 our	 findings.	
Generalization	 is	 always	 a	 concern	 in	 case	 studies,	 especially	 when	 results	 are	
drawn	 from	 a	 single	 case.	 The	 language	 studied	 may	 not	 be	 representative	 of	
dynamically	 typed	 languages.	Further	studies	remain	essential	 to	determine	how	
our	approach	will	work	on	other	languages.	We	are	convinced	that	our	approach	is	
adaptable	to	any	dynamically	typed	language.		

2.	 Data	 validity.	 As	 indicated	 in	 the	 introduction,	 our	 approach	 allows	 test	
input	data	to	be	generated.	The	unavailability	of	test	case	output	data	prevented	us	
from	 using	 the	 data	 generated	 by	 our	 approach	 for	 system-level	 testing.	 To	
mitigate	 this	 threat,	 we	 validated	 our	 generated	 data	with	 domain	 experts.	 	We	
therefore	believe	that	the	probability	of	major	omissions	in	our	data	schema	is	low.	

3.	 The	 experts'	 assessments	 of	 non-calculable	measures	 in	 our	 experiment	
may	 be	 subjective.	 However,	 we	 also	 believe	 that	 the	 experts	 who	 made	 these	
assessments	are	experienced,	which	makes	our	study	credible.	

4.	 Internal	 threats	 to	 validity	 are	 related	 to	 the	 implementation	 of	 the	
approach.	 For	 example,	 we	 performed	 random	 generations	 of	 values.	
Consequently,	 it	 is	 always	 possible	 that	 our	 implementation	 of	 the	 approach	
contains	errors	that	could	affect	the	accuracy	of	our	results.	To	counter	this	threat,	
we	manually	examined	a	subset	of	the	results	and	found	no	apparent	errors.	
	
	
F. Conclusion	

Software	 testing	 consumes	 a	 lot	 of	 resources,	 but	 doesn't	 add	 any	
functionality	to	the	product.	We	have	proposed	an	approach	to	reduce	this	effort	
through	 Automatic	 generation	 of	 test	 data.	 In	 particular,	 it	 is	 a	 difficult	 task	 for	
dynamically	typed	languages,	as	there	is	no	typing	information.	Various	methods	of	
automatically	generating	test	data	have	been	introduced.	The	main	problem	in	the	
process	of	generating	test	data	is	to	determine	which	data	is	valid.	This	work	aims	
to	 improve	 the	 automatic	 generation	 of	 unit	 test	 data	 for	 dynamically	 typed	
languages.	It	is	a	relevant	topic	because	its	objectives	are	to	facilitate	the	software	
testing	 phase.	 The	 proposed	 approach	 is	 simple	 and	 effective	 approach	 to	
generating	 test	 data.	 The	 approach	 is	 effective,	 functional	 and	 adaptable.	 It	
ultimately	 increases	developer	productivity	by	reducing	errors	during	the	testing	
phase	and	work	time.	It	also	improves	software	quality.	Future	works	will	extend	
this	approach	to	other	dynamically	typed	programming	languages.	Next,	we	plan	to	
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define	 and	 use	 constraints	 to	 generate	 test	 cases	 or	 combine	 our	 approach	with	
existing	ones.	
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