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As	 a	 result	 of	 technological	 advancements,	 a	 variety	 of	medical	 diagnostic	
systems	have	grown	rapidly	to	support	the	healthcare	sectors.	Over	the	past	
years,	 there	 has	 been	 considerable	 interest	 in	 utilizing	 deep	 learning	
algorithms	 for	 the	 proactive	 diagnosis	 of	multiple	 diseases.	 In	most	 cases,	
Coronavirus	 (COVID-19)	 and	 tuberculosis	 (TB)	 are	 diagnosed	 through	 the	
examination	 of	 pulmonary	 X-rays.	 Deep	 learning	 algorithms	 can	 identify	
tuberculosis	with	an	almost	medical-grade	level	of	consistency	by	extracting	
the	 lung	 regions	 in	 the	 X-ray	 images.	 The	 probability	 of	 tuberculosis	
detection	 is	 increased	 when	 classification	 algorithms	 are	 applied	 to	
segmented	lungs	rather	than	the	entire	X-ray.	The	main	focus	of	this	paper	is	
to	 execute	 lung	 segmentation	 from	 X-ray	 images	 using	 the	 deeplabv3plus	
CNN-based	 semantic	 segmentation	model.	 In	 other	 CNN	 architectures,	 the	
feature	resolution	diminishes	as	the	network	becomes	deeper	due	to	the	use	
of	 sequential	 convolutions	 with	 pooling	 or	 striding	 within	 the	 down-
sampling	 stage.	 To	 tackle	 this	 drawback,	 deeplabv3plus	 incorporates	
"Atrous	Convolution"	in	addition	to	modifying	the	pooling	and	convolutional	
striding	 components	 of	 the	 backbone.	 The	 experimental	 results	 were:	 an	
accuracy	 of	 97.42%,	 a	 Jaccard	 index	 of	 93.49%,	 and	 a	 dice	 coefficient	 of	
96.63%.	 We	 also	 conduct	 an	 extensive	 comparison	 between	 the	
deeplabv3plus	 segmentation	 model	 and	 other	 benchmark	 segmentation	
architectures.	 The	 results	 prove	 the	 ability	 of	 the	 deeplabv3plus	model	 to	
achieve	precise	lung	segmentation	from	X-ray	images.	
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A. Introduction	
Chest	X-rays	are	primarily	used	 to	diagnose	different	cardiac	and	pulmonary	

conditions	by	examining	the	anatomical	structures	of	the	chest,	including	the	heart,	
clavicles,	 and	 lungs	 [1].	 In	 the	 healthcare	 sector,	 many	 chest	 X-ray	 images	 are	
generated	annually	to	examine	the	medical	cases	of	patients	[2][3].	This	excessive	
increase	requires	effort,	high	costs,	and	time	to	be	analyzed	manually.	Nowadays,	
Computer-Aided	 Diagnostic	 (CAD)	 systems	 are	 widely	 used	 to	 detect	 multiple	
types	of	chest	disease	[4].	Recent	years	have	seen	a	significant	development	in	CAD	
systems	 to	 support	 radiologists	 in	 diagnosing	 chest	 radiographs	 [5].	 Various	
analytical	 tasks	 that	 need	 accurate	 segmentation	 of	 the	 anatomical	 structures	 in	
the	 chest	 radiography	 images	 are	 considered	 when	 designing	 the	 CAD	 system	
[6][7].	These	duties	include	estimating	the	presence	of	disease	and	doing	different	
size	measurements	on	 the	 chest	 radiographs,	 such	 as	 identifying	 lung	disease	or	
pulmonary	 nodules	 using	 lung	 field	 segmentation	 [8].	 Diagnosing	 radiographic	
chest	 images,	 however,	 remains	 difficult	when	 it	 comes	 to	 bodily	 structures	 like	
the	 heart,	 clavicles,	 and	 lungs	 that	 have	 overlapping	 and	 hazy	 borders	 [9][10].	
Furthermore,	the	gender,	age,	and	physical	characteristics	of	the	patient	affect	the	
size	 and	 shape	 of	 anatomical	 structures.	 A	 further	 factor	 that	 complicates	 the	
segmentation	 of	 anatomical	 features	 in	 chest	 radiography	 is	 the	 existence	 of	
medical	equipment,	such	as	guidewires	and	pacemakers	[11].		

Semantic	 segmentation	 is	 considered	 one	 of	 the	 computer	 vision	 tasks	 in	
which	 each	 pixel	 is	 classified	 to	 its	 semantic	 label.	 In	 contrast	 to	 image	
classification,	 which	 classifies	 the	 whole	 image	 into	 a	 single	 label	 [12].	 The	
objective	of	semantic	segmentation	 is	 to	present	a	comprehensive	understanding	
of	the	image	at	the	pixel	level.	The	main	applications	of	semantic	segmentation	are	
auto-driving	 systems,	 medical	 image	 analysis,	 object	 detection,	 and	 scene	
understanding	[13].	The	traditional	 image	segmentation	techniques	often	depend	
on	 low-level	 features,	 such	 as	 edges	 or	 textures,	 to	 separate	 objects	 in	 an	 image	
[14][15].	Rule-based	systems,	such	as	intensity	thresholding,	edge	detection-based	
techniques,	 hybrid	 models,	 and	 landmark-based	 models	 are	 some	 examples	 of	
these	strategies	[16].	Unfortunately,	the	effective	performance	of	these	approaches	
depends	on	optimizing	some	parameters,	and	they	often	are	not	precise	when	the	
anatomical	parts	overlap	[17].		

Deep	 learning	 and	 Convolutional	 Neural	 Networks	 (CNNs)	 have	 made	
significant	 advancements	 in	 semantic	 segmentation.	 CNNs	 perform	 exceptionally	
well	in	segmentation	tasks,	particularly	in	biomedical	imaging,	which	is	why	CNN-
based	 approaches	 have	 become	 widely	 used	 [18].	 Additionally,	 medical	
applications	such	as	vascular	segmentation,	 catheter	segmentation	 in	X-rays,	and	
lung	segmentation	in	chest	radiography	have	benefited	greatly	from	deep	learning	
[19].	The	deep	 learning	 techniques	 that	are	most	used	 in	segmentation	 tasks	are	
Fully	 Connected	 Network	 (FCN),	 U-Net,	 and	 Residual	 CNN	 (Res-Net)	 [20].	
Nevertheless,	 it	can	be	challenging	to	segment	the	medical	 images	using	U-Net22	
since	 the	 Region	 of	 Interest	 (ROI)	 may	 look	 similar.	 To	 get	 a	 more	 accurate	
segmentation	performance,	deeper	CNN	structures	with	more	layers	are	preferred	
for	better	feature	representation	[21].	To	obtain	a	better	feature	representation	for	
the	 anatomical	 structure	 segmentation,	 we,	 therefore,	 used	 a	 residual	 CNN	
architecture	with	identity	connection	[22].		
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This	 paper	 aims	 to	 perform	 semantic	 lung	 segmentation	 from	 X-ray	 images	
using	 residual-based	 deeplabv3Plus.	 Then	 the	 proposed	 method	 has	 been	
evaluated	by	comparing	it	with	some	related	works.	The	deeplabv3plus	proved	its	
robustness	to	achieve	precise	lung	segmentation	and	extract	the	ROI.		

The	rest	of	this	paper	is	organized	as:	section	two	presents	a	survey	about	the	
most	 related	 research	 that	 focused	 on	 the	 utilization	 of	 deep	 learning	 in	 lung	
segmentation.	 Section	 three	 describes	 the	 research	 methodology,	 dataset	
description,	preprocessing,	training	environment,	and	deeplabv3plus	architecture.	
Section	 Four	 provides	 and	 discusses	 the	 obtained	 results,	 and	 section	 five	
identifies	the	main	conclusion	points	for	this	paper.   
	
B. Related	Works	

Extracting	 the	 lung	shapes	 from	the	X-ray	 images	 is	a	crucial	 task	 in	medical	
image	diagnosis.	A	variety	of	diseases	can	be	identified	and	treated	depending	on	
the	 lung	 shape.	 Hence,	 many	 researchers	 focused	 on	 studying	 and	 developing	
many	deep	learning-based	techniques	to	achieve	this	task.	

W.	 Liu	 et	 al.	 proposed	 an	 enhanced	U-Net	model	 to	 segment	 lung	 shapes	
from	X-ray	images.	The	model	 is	trained	and	tested	using	the	Japanese	Society	of	
Radiological	 Technology	 (JSRT)	 and	 Montgomery	 County	 (MC)	 datasets.	 The	
enhancement	 involves	utilizing	an	efficientNet-b4	as	an	encoder	and	the	residual	
block	with	ReLU	 activation	 function	 to	work	 as	 a	 decoder.	 The	 evaluation	 result	
indicated	the	ability	of	the	proposed	system	to	optimize	the	traditional	U-Net	dice	
coefficient	by	2.5%	and	the	Jaccard	index	by	6%	[23].	

S.	 A.	 Hashem	 and	 M.	 Y.	 Kamil	 used	 a	 traditional	 U-Net	 model	 with	
contracting	 encoder	 and	 decoder	 paths	 to	 segment	 the	 lung	 regions	 from	 565	
images	with	 its	masks	 in	 Shenzhen	 and	Montgomery	 publicly	 available	 datasets.	
ADAM	 was	 employed	 as	 an	 optimization	 algorithm	 because	 it	 involves	 the	
advantages	 of	 RMSProp	 and	 AdaGrad.	 The	 experimental	 results	 of	 the	 proposed	
model	were	in	terms	of	accuracy	91.47	and	IoU	74.94%	[24].	

S.	Gite	et	al,	investigated	some	segmentation	benchmarks	such	as	FCN,	Seg-
Net,	U-Net,	 and	U-Net++	 to	use	 in	 lung	 segmentation	 from	X-rays.	Detection	 and	
classification	 of	 tuberculosis	 can	 be	 more	 accurate	 after	 lung	 segmentation.	
Consequently,	the	U-Net	++	performance	in	lung	segmentation	was	compared	with	
the	 performance	 of	 the	 rest	 segmentation	models.	 The	 U-Net	 ++	 has	 achieved	 a	
higher	accuracy	of	98%	and	a	mean	IoU	of	95%	[25].	

T.	 Pranata	 et	 al.	 proposed	 a	 traditional	 U-Net	 CNN	model	 to	 segment	 the	
lung	shape	from	X-ray	images	in	the	MC	and	Shenzhen	datasets.	The	images	have	
been	 preprocessed	 using	 Contrast	 Limited	 Adaptive	 Histogram	 Equalization	
(CLAHE)	 to	 be	 sufficient	 for	 model	 training.	 The	 effectiveness	 of	 the	 model	 is	
examined	 and	 the	 results	 are	 measured	 in	 terms	 of	 average	 accuracy	 of	 91.68,	
sensitivity	of	92.80%,	precision	of	95.07%,	and	F1	score	of	93.92%	[26].	

P.	 R.	 A.	 S.	 Bassi	 and	 R.	 Attux	 investigated	 the	 importance	 of	 the	 lung	
segmentation	 process	 in	 generalizing	 the	 COVID-19	 states	 classification.	 The	
traditional	U-Net	has	been	used	to	segment	X-ray	images	from	NIH	ChestX-ray14,	
Montgomery	 and	 Shenzhen,	 the	 Covid-19	 dataset,	 and	 CheXPert	 datasets.	 The	
classification	 has	 been	 performed	with	 and	without	 lung,	 segmentation	 to	 check	
the	 impact	 of	 segmentation	 on	 the	 classification	 results.	 The	 result	 showed	 that	
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classification	 mean	 accuracy	 was	 78.7%	 with	 segmentation	 and	 74%	 without	
segmentation	[27].	
M.	 Chavan	 et	 al.	 proposed	 a	 ResUNet++	 segmentation	 model	 by	 composing	
traditional	 Res-Net	 and	 U-Net.	 The	 ResUNet++	 involved	 contracting	 the	 encoder	
and	expanding	the	decoder	as	well	as	using	the	identity	connection	of	the	Res-Net.	
The	Montgomery	dataset	with	138	images	was	used	and	preprocessed	to	be	valid	
for	 training.	 The	 proposed	 model	 was	 evaluated	 by	 comparing	 its	 performance	
with	 the	 performance	 of	 the	 FCN,	 U-Net,	 Res-Net,	 and	 Seg-Net.	 The	 ResUNet++	
achieved	a	higher	Dice	coefficient	of	96.26%,	and	a	higher	IoU	of	94.27%	[28].	

Y.	Said	et	al.	developed	a	segmentation	and	classification	diagnosing	system	to	
detect	lung	cancer	cases	in	Decathlon	3D	CT	scans.	The	proposed	system	has	two	
parts:	 the	segmentation	 involves	modifying	U-Net	 to	build	the	UNETR	model	and	
classification	 of	 the	 segmented	 CT	 scans	 to	 benign	 or	 malignant	 cases.	 The	
proposed	 system	 presented	 a	 segmentation	 accuracy	 of	 97.83%	 and	 a	
classification	accuracy	of	98.77%	[29].	

Y.	 Lyu	 and	 X.	 Tian	 suggested	 the	 “Multiple	 tasking	 Wasserstein	 Generative	
Adversarial	Network	(MWG-UNet)”	model	 to	 tackle	 the	vanishing	gradient	 issues	
in	GAN	networks.	The	model	segmented	the	lung	field	and	heart	regions	from	JSRT	
dataset	images.	Data	augmentation	and	adaptive	histogram	equalization	were	used	
as	 a	 preprocessing	 operation	 to	 increase	 and	 enhance	 the	 input	 images.	 The	
segmentation	 results	 for	 lung	 fields	 and	heart	were	dice	 coefficient	 71.16%,	 and	
IoU	74.56%.	At	 the	same	time,	 the	 lung	 field	segmentation	achieved	85.18%	dice	
coefficient	and	81.36%	IoU.	The	obtained	results	indicated	that	the	model	needs	to	
be	improved	to	segment	accurately	[30].	

I.	Ullah	et	al.	developed	a	multi-organs	segmentation	framework	to	analyze	the	
chest’s	 anatomical	 structure	 in	 the	 X-ray	 images.	 This	 framework	 used	 two	
encoder-decoder-based	networks.	 The	 first	 network	used	predefined	VGG19,	 the	
output	of	the	first	network	is	fed	as	input	of	the	second	network	which	is	designed	
based	 on	 the	 recurrent	 residual	 blocks	 to	 increase	 the	 performance	 of	 the	 small	
parts	segmentation.	The	framework	was	evaluated	using	three	datasets	MC,	JSRT,	
and	SCXR	separately	in	terms	of	the	Dice	coefficient	and	IoU	[31].	

D.	 Hasan	 and	 U.	 Jader	 utilized	 the	 predefined	 Seg-Net	 as	 a	 semantic	
segmentation	model	 to	 segment	 the	 lung	 regions	 from	 X-ray	 images.	 The	model	
was	 evaluated	 using	 539	 images	 from	 MC	 and	 Shenzhen	 publicly	 available	
datasets.	The	X-ray	images	have	been	preprocessed	and	resized	to	256*256	to	be	
suitable	for	model	training	and	testing.	The	experimental	results	were	(97.71%)	as	
dice	coefficient	and	(94.08%)	as	IoU	[32].	

A.	 Sulaiman	 et	 al.	 presented	 a	 concatenated	block	based	on	CNN	 to	 segment	
lung	pixels	from	X-ray	images.	Each	block	contains	a	set	of	kernels	that	extract	the	
important	features	from	the	images.	To	examine	the	robustness	of	the	model,	five	
datasets	(MC,	have	been	used	to	train	and	test	the	model.	The	performance	of	the	
model	is	measured	in	accuracy	at	97%,	IoU	of	93%,	and	96%	of	the	Dice	coefficient	
[33].	

A.	E.	Pedersen	et	al.	investigated	the	ability	of	the	U-Net	CNN	to	be	utilized	in	
lung	segmentation	and	optimized	collimation	borders	on	a	 limited	X-ray	dataset.	
The	672	X-ray	 images	 from	 the	Shenzhen	dataset	have	been	used	and	resized	 to	
three	different	dimensions	128*128,	256*256,	and	512*512.	The	U-Net	has	been	
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trained	and	tested	using	each	image	dimension	set	separately.	Then,	the	generated	
masks	were	 compared	with	 the	 handcrafted	 images	 by	 three	 radiographers	 and	
two	junior	radiologists.	This	comparison	was	performed	using	the	Disc	coefficient,	
which	 indicated	 that	 U-Net	 can	 present	 accurate	 lung	 segmentation	 from	 X-ray	
images	[34].	
	
C. Methodology		
a. 	Dataset	
In	 this	 paper,	 Shenzhen's	 publicly	 available	 dataset	 has	 been	 utilized	 to	 train,	

evaluate,	 and	 test	 the	 performance	 of	 a	 state-of-art	 deeplabv3plus	 segmentation	
model.	The	dataset	is	collected	and	validated	in	cooperation	with	Shenzhen	No.	3	
People's	 Hospital,	 Guangdong	 Medical	 College,	 Shenzhen,	 China,	 the	 Shenzhen	
dataset.	It	consists	of	662	X-ray	images	for	various	cases	that	come	from	outpatient	
clinics	 and	were	 taken	with	 a	 Philips	 DR	Digital	 Diagnose	 system	 as	 part	 of	 the	
regular	 hospital	 protocol	 within	 a	 month,	 primarily	 in	 September	 2012.	 The	
dataset	includes	frontal	chest	X-rays,	including	pediatric	X-rays	(AP),	326	of	which	
are	 normal	 cases	 and	 336	 of	 which	 show	 signs	 of	 tuberculosis.	 Although	 it	 can	
vary,	their	approximate	dimension	is	3K	×	3K	pixels.	
	
b. Data	Preprocessing	
Since	the	X-ray	images	in	the	Shenzhen	dataset	are	in	JPEG	and	DICOM	formats,	as	
well	 as,	 the	 dimensions	 of	 the	 images	 are	 not	 unified,	 the	 X-ray	 images	 were	
converted	to	PNG	format	to	make	the	model’s	training	faster	and	easier.	Next,	the	
dimensions	of	the	input	images	have	been	resized	to	256	*	256	to	be	valid	for	the	
input	 layer.	 The	 data	 augmentation	 technique	 is	 an	 essential	 tool	 to	 enrich	 the	
dataset	 images.	Many	data	 augmentation	 techniques	 have	 been	 such	 as	 rotation,	
scaling,	and	reflection	to	provide	the	dataset	with	additional	samples	for	training	
operations.	The	dataset	has	been	divided	 into	60%	 for	 training,	 30%	 for	 testing,	
and	 10%	 for	 the.	 After	 preprocessing	 the	 X-ray	 images,	 the	 number	 of	 pixels	 in	
training	dataset	images	was	distributed	on	the	two	classes,	Image	background	and	
the	ROI	(lung)	as	shown	in	Table	1.	
	

Table	1.	Pixel	Distribution	on	the	Background	and	Lung	Regions.	
Name		 Pixel	Count	 Image	Pixel	Count	

Background	 2.7373*107	 3.6635e+07	
Lung	 9.2614*106	 3.6635e+07	

Figure	1	shows	the	number	of	pixels	for	each	class	in	the	training	dataset.	
	
	
	
	
	
	
	
	
	
	
	

Figure	1.	Pixel	Distribution	in	Training	Dataset.	
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c. DeepLabv3Plus	Model	
Google	 Artificial	 Intelligence	 designed	 a	 set	 of	 high-performing	 traditional	 deep-
learning	 semantic	 segmentation	 networks	 called	 Deeplab.	 The	 most	 advanced	
model	 in	 this	 series,	 Deeplabv3plus,	 is	 an	 enhanced	 version	 of	Deeplabv3.	Many	
autonomous	 driving	 firms	 use	 this	 practical	 technology	 for	 lane	 detection	 and	
environment	 perception	 because	 of	 its	 ability	 to	 restore	 image	 features,	 which	
results	 in	 high	 output	 image	 performance.	 Despite	 the	 extensive	 and	 intricate	
network	 design,	 the	 semantic	 segmentation	 effect	 essentially	 has	 no	 flaws.	 The	
expanded	 convolution	 is	 used	 by	 the	 backbone	 network	 in	 the	 encoder	 of	 this	
network	to	expand	the	receptive	field	and	enhance	information	feature	extraction	
performance.	
The	 decoder	 receives	 the	 low-level	 features	 from	 the	 backbone	network,	 and	 an	
Atrous	Spatial	Pyramid	Pooling	(ASPP)	module	combines	 the	high-level	semantic	
features	 to	 improve	the	 image's	global	semantic	 information.	The	ASPP	performs	
the	 convolutional	 operation	 on	 the	 feature	map	 using	 a	 convolution	 kernel	with	
varying	 expansion	 rates,	 improving	 the	 capability	 of	 global	 feature	 learning.	The	
Concat	 function	 in	 the	 network	 decoder	 fuses	 the	 ASPP	 output	 with	 low-level	
features,	and	a	sequence	of	convolution	 layers	and	up-sampling	brings	the	 image	
back	to	the	original	resolution.	Figure	2	shows	the	architecture	of	the	encoder	and	
decoder	in	deeplabv3plus.	

	
In	 the	 Backbone	 module,	 to	 optimize	 the	 segmentation	 labels	 from	 the	 input	
images,	deeplabv3	has	been	enhanced	by	adding	an	effective	decoder	module.	With	
faster	calculation,	DeepLabV3+	further	improves	performance	by	using	a	modified	
version	of	the	"Aligned	Xception"	model	as	its	main	feature	extractor.	The	modified	
backbone	 substitutes	 depth-wise	 separable	 convolutions	 for	 all	 down-sampling	
max	pooling	blocks;	 it	does	not	update	 the	"entry	 flow"	 like	 its	counterpart.	This	
makes	extracting	feature	maps	at	any	resolution	possible	by	utilizing	the	suggested	
Atrous	 separable	 convolution.	 Beyond	 each	 (3×3)	 depth-wise	 separable	
convolution,	there	is	a	batch	normalization	and	a	ReLU	activation	layer.	
	

Figure	2.	DeepLabv3Plus	Architecture.	
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d. Model	Training	
We	have	presented	the	configuration	of	the	hyperparameters	that	have	produced	
the	best	 results	 after	 running	 tests	with	many	values	 for	hyperparameters.	With	
deeplabv3plus,	we	have	utilized	a	batch	size	of	1.	The	early	layers	of	deep	learning	
neural	 networks	 handle	 generic	 characteristics,	 suggesting	 that	 they	 may	 be	
applied	 to	 tasks	 other	 than	 random	weight	 initialization	 in	 computer	 vision.	We	
have	applied	the	Adam	optimization	method	with	a	learn	rate	drop	period	of	1,	a	
learning	 rate	 drop	 factor	 of	 0.3,	 and	 an	 initial	 learn	 rate	 of	 0.001.	 Because	 of	 a	
binary	 class	 issue,	 the	 sigmoid	 cross	 entropy	 loss	 function	was	 used	 to	 train	 all	
networks	 for	 15	 epochs.	 The	 training	 process	 has	 been	 executed	 using	 an	 ASUS	
computer	 system,	 ci5	 CPU	 with	 8	 cores,	 8	 GB	 of	 RAM	 Windows	 11	 operating	
system,	and	2GB	NVIDIA	GeForce	MX	110	GPU	with	2.	This	study	was	carried	out	
using	the	MATLAB.	However,	the	model	takes	about	(1)	hour	and	(21)	minutes	to	
be	trained	and	tested.	
	
D. Result	and	Discussion	
Many	evaluation	metrics	have	been	used	to	evaluate	the	performance	of	 the	Seg-
Net	 semantic	 segmentation	 model,	 including	 the	 Jaccard	 index,	 Dice	 Similarity	
Coefficient	(DSC),	and	Global	Accuracy.	As	illustrated	in	the	subsequent	expression,	
the	global	accuracy	is	typically	calculated	as	the	proportion	of	accurately	predicted	
pixels	within	all	labels	in	the	testing	dataset	to	the	total	number	of	pixels.	
	
Global	Accuracy=(TN+TP)/(TP+TN+FN+FP)	 	 	 	 	 					(1)	

Where	 TP	 is	 the	 number	 of	 the	 predicted	 pixels	 that	 are	 truly	 predicted	 as	 a	
background,	TN	is	the	number	of	the	pixels	that	are	predicted	as	truly	a	lung.	FP	is	
the	number	of	pixels	in	background	regions	but	predicted	as	lung	pixels,	and	FN	is	
the	number	of	pixels	in	lung	regions	but	predicted	as	background	pixels.	The	Dice	
Coefficient	 is	 usually	 used	 as	 an	 indicator	 of	 the	 overlapping	 area	 between	 the	
actual	label	and	the	predicted	label	as	expressed	in	the	following:	
	
Dice	Coefficient=(2*TP)/((TP+FP)+(FN+TP))	 	 	 	 	 					(2)	

Another	 evaluation	metric	 is	 the	 Intersection	 Over	 Union	 (IoU)	 metric	 which	 is	
known	 as	 the	 Jaccard	 index.	 It	 is	 considered	 as	 a	 similarity	 index	 between	 the	
ground	truth	and	predicted	labels.	The	following	formula	expresses	the	IoU:	
	
Intersection	over	Union	(Jaccard	Index)=TP/(TP+FN+FP)	 	 	 					(3)	

The	 confusion	 matrix	 shown	 in	 Table	 2	 illustrates	 that	 about	 98.6%	 of	 the	
background	pixels	have	been	truly	predicted	as	background,	while	about	1.3%	of	
the	 background	 pixels	 have	 been	 predicted	 falsely	 as	 lung.	 In	 addition,	 there	 is	
about	93.8%	of	the	lung	pixels	have	been	truly	predicted	as	lung	and	about	6.1%	
have	been	predicted	falsely	as	background.	
	

Table	2.	Confusion	Matrix	of	The	Deeplabv3plus	Performance.	
	 Background	 Lung	

Background	 0.98656	 0.013438	
Lung	 0.061239	 0.93876	
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To	 visualize	 the	 pixels	 that	 have	 been	 predicted	 as	 background	 and	 lung,	 we	
overlay	the	actual	class	label	of	the	X-ray	image	with	its	corresponding	predicted	
class	label	as	shown	in	Figure	3.	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
The	black	and	white	regions	in	Figure	3-c	refer	to	the	background	and	lung	regions	
respectively.	 The	 black	 and	 white	 regions	 appear	 as	 a	 result	 of	 successfully	
predicting	 the	 pixels	 for	 the	 background	 and	 lung.	 The	 green	 color	 refers	 to	 the	
pixels	 that	 belong	 to	 the	 lung	 class	 but	 are	 predicted	 as	 background	 pixels.	
Similarly,	the	violet	color	refers	to	the	background	pixels	but	is	predicted	as	lung.	

The	 experimental	 results	 of	 the	 proposed	 deeplabv3plus	 are	 illustrated	 in	
Table	2	as	shown	below:		

	
Table	3.	The	Experimental	Results	of	The	Proposed	Deeplabv3plus	Model.	

Metric	 Value	
Dice	Coefficient	(DC)	 0.9663	
Jaccard	Index	(JI)	 0.9349	

Global	Accuracy	(GA)	 0.9742	
The	 effectiveness	 of	 the	 proposed	 deeplabve3plus	 model	 to	 perform	 accurate	
segmentation	 is	 compared	 with	 other	 state-of-the-art	 models	 in	 terms	 of	 some	

c. Overlapped	Actual	and	Predicted	Class	Label.	

Figure	3.	The	Actual	and	Predicting	Class.	
Labels.	

a. 	Actual	X-ray	Images.	

b. Overlapping	Images	with	Actual	Class	Label. 
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performance	 criteria.	 Table	 4	 compares	 the	 performance	 of	 the	 proposed	model	
with	other	related	works.	
	

Table	4.	Comparison	of	The	Proposed	Work	with	The	Related	Works.	
Author	 Model	 Dataset	 GA	 JI	 Dice	

S.	A.	Hashem	and	M.	Y.	Kamil		
[24]	 U-Net	 Shenzhen	 91.47%	 74.94	 -	

T.	Pranata	et	al.	
[26]	 U-Net	 MC	and	

Shenzhen	 91.68	 -	 -	

M.	Chavan	et	al.	
[28]	

ResNet	with	
U-Net	 MC	 -	 94.27%	 96.26%	

Y.	Lyu	and	X.	Tian	[30]	 MWG-UNet	 JSRT	 -	 81.36%	 85.18%	
A.	Sulaiman	et	al.	[33]	 CNN	 MC	 97%	 93%	 96%	
The	Proposed	Work	
(Deeplabv3plus)	 Deeplabv3plus	 Shenzhen	 97.42%	 93.49%	 96.63%	

	
In	 comparison	 with	 other	 related	 models,	 deeplabv3plus	 achieved	 better	
performance	 than	 other	 works.	 Many	 works	 utilized	 the	 U-Net	 with	 MC	 and	
Shenzhen	datasets	as	the	model	can	be	trained	and	tested	with	small	datasets	

	
E. Conclusion	
This	 research	 proposed	 an	 automated	 deeplabv3plus	 CNN	 model	 to	 accurately	
segment	 the	 region	 of	 interest	 in	 X-ray	 images.	 This	 model	 is	 capable	 of	
distinguishing	 the	 pixels’	 classes	 within	 fuzzy	 regions	 that	 separate	 the	 lung	
regions	from	the	image	background.	Precise	segmentation	of	lung	segmentation	is	
a	 significant	 step	 towards	 building	 a	 robust	 CAD	 system	 that	 supports	 medical	
decisions	 about	 the	 various	 types	 of	 chest	 diseases.	 The	 ASPP	module	 gives	 the	
deeplabv3plus	 model	 the	 ability	 to	 improve	 the	 image's	 global	 semantic	
information	 by	 combining	 the	 high-level	 semantic	 features.	 In	 addition,	 the	
performance	of	the	deeplabv3plus	has	been	optimized	using	a	modified	version	of	
the	"Aligned	Xception"	model	as	its	main	feature	extractor.	The	performance	of	the	
model	 has	 been	measured	 and	 compared	 with	 other	 related	 works.	 The	 results	
indicate	 the	 ability	 of	 the	 proposed	 system	 to	 execute	 accurate	 semantic	 lung	
segmentation	from	X-ray	images.	We	recommend	that	the	deeplabv3plus	model	be	
modified	using	transfer	learning	to	increase	the	performance	as	well	as	minimize	
the	number	of	parameters	to	reduce	the	time	required	to	train	the	model.	
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