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This	 review	 article	 delves	 into	 applying	 deep	 learning	 methodologies	 in	
conjunction	 with	 microarray	 data	 for	 cancer	 classification.	 The	 study	
provides	 a	 comprehensive	 overview	 of	 recent	 advancements	 in	 utilizing	
deep	 learning	 techniques	 to	 accurately	 categorize	 cancer	 types	 based	 on	
intricate	patterns	discerned	 from	microarray	datasets.	Various	 aspects	 are	
covered,	 including	 integrating	 deep	 learning	 algorithms,	 exploring	 diverse	
cancer	 types,	 and	 analyzing	 microarray	 data	 to	 enhance	 classification	
accuracy.	The	review	synthesizes	findings	from	recent	research,	highlighting	
the	efficacy	of	deep	learning	in	uncovering	subtle	and	complex	relationships	
within	microarray	data	that	contribute	to	improved	classification	outcomes.	
Key	insights	into	the	strengths	and	limitations	of	employing	deep	learning	in	
this	context	are	discussed,	offering	a	critical	appraisal	of	the	field's	current	
state.	 This	 review	 aims	 to	 provide	 a	 valuable	 resource	 for	 researchers,	
clinicians,	 and	 practitioners	 interested	 in	 cutting-edge	 developments	 in	
cancer	 classification	 methodologies	 by	 exploring	 the	 intersection	 of	 deep	
learning	and	microarray	technology.	The	synthesis	of	knowledge	presented	
herein	contributes	to	a	deeper	understanding	of	the	potential	and	challenges	
associated	 with	 harnessing	 deep	 learning	 for	 enhanced	 classification	
accuracy	in	the	realm	of	cancer	research.	
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Introduction		
Cancer,	 a	 group	 of	 diseases	 characterized	 by	 the	 uncontrolled	 growth	 of	

malignant	 cells	 resulting	 from	 genetic	 alterations,	 poses	 a	 significant	 threat	 to	
human	health.	These	aberrant	cells	proliferate	unchecked,	infiltrating	organs	and,	
in	 many	 cases,	 leading	 to	 fatal	 outcomes.	 Globally,	 cancer	 stands	 as	 the	 second	
most	prevalent	cause	of	mortality,	surpassed	only	by	cardiovascular	diseases[1] In	
recent	times,	gene	expression	analysis	has	emerged	as	a	pivotal	tool	in	tackling	the	
intricate	 challenges	associated	with	 cancer	diagnosis	 and	drug	discovery[2],[3]´	 .	
This	analytical	approach	not	only	sheds	light	on	the	intricate	molecular	landscape	
of	 cancer	 but	 also	 unravels	 the	 roles	 of	 various	 genes	 in	 its	 initiation	 and	
progression.	 Consequently,	 alterations	 in	 gene	 expression	 patterns	 serve	 as	
valuable	indicators	for	the	early	detection	of	cancer	and	identification	of	potential	
targets	for	drug	development.	This	transformative	use	of	gene	expression	analysis	
opens	avenues	for	healthcare	that	is	not	only	more	personalized	but	also	proactive	
and	predictive[4].	By	leveraging	the	insights	derived	from	gene	expression,	we	can	
envision	 a	 future	where	 healthcare	 strategies	 are	 tailored	 to	 individual	 profiles,	
emphasizing	prevention	and	early	intervention	for	enhanced	patient	outcomes.	

	
1. Gene	Expression			
	
Gene	expression	analysis	constitutes	identifying	transcripts	within	specific	cells	or	
tissues,	 aiming	 to	 estimate	 the	 levels	 of	 expressed	 genes.	 The	 scientific	 field	
dedicated	 to	 quantitatively	 examining	 the	 transcriptome	 is	 known	 as	
transcriptomics[5]  .	 In	the	initial	stages	of	computational	transcriptomics,	Sanger	
sequencing	was	the	prevailing	method	for	analyzing	expressed	sequence	tag	(EST)	
libraries.	These	libraries	consist	of	concise	mRNA	fragments	derived	from	a	single	
sequencing	procedure	applied	 to	 randomly	chosen	clones	originating	 from	cDNA	
libraries.	Essentially,	a	cDNA	library	is	a	compilation	of	DNA	sequences	that	have	
been	 cloned,	 serving	 as	 complements	 to	 mRNA	 extracted	 from	 an	 organism	 or	
tissue.	 A	 substantial	 milestone	 in	 this	 field	 has	 been	 the	 production	 of	 over	 45	
million	EST	libraries,	encompassing	a	diverse	array	of	approximately	1400	distinct	
cellular	species	to	date.	

While	EST	 (expressed	 sequence	 tag)	 libraries	offer	 a	 foundational	 resolution	
profile	of	expressed	gene	sequences,	 it's	 important	 to	note	their	 limitation	 in	not	
containing	 full-length	gene	sequences.	Consequently,	 technologies	relying	on	EST	
libraries	were	surpassed	by	chemical	tag-based	techniques,	with	Serial	Analysis	of	
Gene	 Expression	 (SAGE)	 emerging	 as	 a	 prominent	 method.	 SAGE	 enables	
quantitative	and	 simultaneous	analysis	of	numerous	 transcripts	within	a	 specific	
cell	system,	requiring	no	prior	knowledge	of	the	genes	involved.	This	method	relies	
on	a	theoretical	calculation	assuming	a	random	nucleotide	distribution	across	the	
genome.	The	evolution	 from	Sanger	 sequencing	of	EST	 libraries	 and	SAGE	 led	 to	
the	 adoption	 of	 more	 advanced	 technologies,	 including	 DNA	 (Deoxyribonucleic	
Acid)	 microarrays	 and	Ribonucleic	 acid	(RNA-Seq.)	 within	 Next-Generation	
Sequencing	 (NGS)	methods,	 for	 a	more	 comprehensive	and	precise	estimation	of	
gene	expression	levels.	
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2.1 	Microarray		
Microarray	data	is	derived	from	a	laboratory	technique	where	a	DNA	sequence	is	
embedded	 in	 a	 two-dimensional	 array,	 often	 referred	 to	 as	 chips	 or	 slides,	
comprising	 thousands	 of	microscopic	 spots.	 Each	 spot	 is	 designated	 for	 a	 single	
DNA	sequence	or	gene.	The	hybridization	process	facilitates	binding	DNA	samples	
to	 the	microarray	slide,	 followed	by	color	scanning	of	 the	areas	 to	measure	gene	
expression[5]	 .	 In	 microarray	 data,	 rows	 signify	 gene	 expression	 levels,	 while	
columns	 represent	 individual	 samples.	 Microarrays	 serve	 multiple	 purposes,	
capable	 of	 identifying	 DNA	 (as	 in	 comparative	 genomic	 hybridization)	 or	 RNA,	
often	in	the	form	of	cDNA	following	reverse	transcription.	These	data	contribute	to	
a	 comprehensive	 understanding	 of	 cellular	 processes,	 offering	 genome-wide	
expression	 profiles	 linked	 to	 specific	 conditions	 or	 diseases,	 such	 as	 cancer.	
Beyond	 diagnostics,	 microarray	 data	 plays	 a	 crucial	 role	 in	 pharmaceutical	
research,	 pharmacogenomics,	 and	 the	 development	 of	 effective	 therapeutic	
medications.[6].	

A	notable	advantage	of	DNA	microarrays	lies	in	their	capacity	to	measure	the	
expression	level	of	thousands	of	genes	simultaneously.	However,	 it	 is	essential	to	
acknowledge	 their	 limitations,	 including	 accuracy,	 precision,	 and	 specificity	
challenges.	The	experimental	setup's	high	sensitivity	to	variations	in	hybridization	
temperature,	 genetic	 material	 purity,	 degradation	 rate,	 and	 amplification	
potentially	influences	the	accurate	quantification	of	gene	expression.[7].	
2.2 	RNA-Seq.		
RNA-Sequencing	 (RNA-Seq.),	 a	 part	 of	 Next-Generation	 Sequencing	 (NGS)	 (Hu,	
Chitnis	 et	 al.	 2021)methods,	 is	 distinguished	 by	 its	 rapid	 profiling	 capabilities,	
enabling	researchers	to	explore	the	transcriptome	of	any	species	to	determine	the	
presence	and	quantity	of	RNA	at	specific	times	[8].	This	method	generates	millions	
of	 sequences	 from	 intricate	 RNA	 samples,	 serving	 various	 purposes	 such	 as	
measuring	gene	expression,	 investigating	variations	in	gene	expression	over	time	
or	 in	 response	 to	 therapies,	 annotating	 complete	 transcripts,	 exploring	 post-
transcriptional	 modifications,	 and	 characterizing	 alternative	 splicing	 and	
polyadenylation.	

The	 versatility	 of	 RNA-Seq.	 lies	 in	 its	 capacity	 to	 analyze	 all	 RNA	molecules	
within	 a	 cell	 or	 tissue,	 encompassing	 protein-coding	 RNA	 (mRNA),	 non-coding	
regulatory	 RNA	 (miRNA,	 siRNA),	 or	 functional	 RNA	 (tRNA,	 rRNA),	 and	
concurrently	 measure	 their	 abundances.	 Noteworthy	 qualities	 include	 high	
resolution	and	a	broad	dynamic	range,	contributing	to	substantial	data	acquisition	
and	significant	progress	in	transcriptomics	research.	Given	these	advantages,	RNA-
Seq	 has	 progressively	 supplanted	 microarrays	 in	 gene	 expression	 analysis,	 as	
highlighted	 in	 the	 comparison	 presented	 in	 Table	 1,	 which	 assesses	 factors	 like	
discovered	 gene	 range,	 different	 isoforms,	 resolution,	 background	 noise,	 cost,	
rare/new	transcripts,	and	non-coding	RNA	[9].In	conclusion,	RNA-Seq.	stands	out	
for	its	numerous	advantages	over	microarray	data.	
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Table	1.	Distinguishing	microarray	from	RNA-Seq.	data.	
Distinctive	Attributes	 Microarray	Datasets	 RNA-Seq.	Datasets	

Gene	Discovery	 No	 Yes	

Different	Isoform	 No	 Yes	

High	Resolution	 No	 Yes	

Background	Noise	 Yes	 No	

High	Cost	 Yes	 No	

Rare/New	Transcript	 No	 Yes	

Noncoding	RNA	 No	 Yes	

	
2. Public	Datasests	
	

This	section	describes	 the	commonly	available	Microarray	datasets.	Different	
repositories	provide	Microarray	datasets;	this	review	focused	on	two	widely	used	
by	researchers	to	evaluate	their	proposed	models.	These	resources	are	explained	
as	follows:	
2.1 	Gene	Expression	Omnibus	(GEO)	

[10]GEO	 is	 a	 comprehensive	 global	 data	 repository	 for	 functional	 genomics,	
facilitating	 MIAME-compliant	 data	 submissions	 [10],	 It	 accommodates	 diverse	
datasets,	 including	RNA-seq	and	Microarray	data,	 setting	 it	 apart	 from	platforms	
like	 GEO,	 which	 predominantly	 focuses	 on	 Microarray	 data.	 Noteworthy	 is	 the	
expansive	collection	of	3635328	disease-specific	samples	accessible	through	GEO,	
offering	a	valuable	resource	for	researchers.	The	repository	is	freely	accessible	for	
experimental	purposes,	providing	meticulously	curated	gene	expression	profiles	to	
support	scientific	investigations.	
2.2 	The	Cancer	Genome	Atlas	(TCGA)	

TCGA	 is	 a	 pioneering	 initiative	 in	 cancer	 genomics,	 offering	 an	 extensive	
collection	of	84,031	samples	spanning	33	different	types	of	cancer.	[11]	 	Notably,	
TCGA	presents	datasets	that	encompass	measurements	from	microarray	and	RNA-
seq	instruments.	 It	 is	crucial	to	acknowledge	that	the	predominant	focus	of	these	
datasets	 lies	 in	 assessing	 gene	 expression	 levels	 across	 normal	 and	 cancerous	
tissues,	 predominantly	 utilizing	 RNA-seq	 technologies.	 This	 dual	 approach	
enhances	the	comprehensiveness	of	the	available	data,	providing	researchers	with	
a	nuanced	understanding	of	the	genomic	landscape	in	diverse	cancer	types.	
	
3. Deep	Learning	Approaches	

Deep	 learning	 techniques	 utilize	 artificial	 neural	 networks	 (ANNs)	 featuring	
multiple	 strata	 of	 processing	 units	 to	 acquire	 insights	 into	 data	 patterns.	 These	
approaches	 excel	 at	 assimilating	 intricate	 representations	 within	 expansive	
datasets,	 conferring	 a	 distinctive	 edge	 over	 traditional	 machine	 learning	 (ML)	
methodologies[12].	 As	 a	 result,	 contemporary	 cutting-edge	 approaches	 to	 gene	
expression	 analysis	 capitalize	 on	 the	 distinctive	 competencies	 offered	 by	 these	
techniques	 [13]	 Prevalent	 neural	 network	 architectures	 encompass	 fully	
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connected	networks	(multi-layer	perceptron	NN),	convolutional	networks	(CNN),	
recurrent	 networks	 (RNN),	 graph	 networks	 (GNN),	 and	 transformer	 networks	
(TNN)	[14].	

4.1 Multi-layer	perceptron	(MLP)	1	
MLP	 is	 a	 prominent	 type	 of	 feedforward	 neural	 network	 within	 pattern	
recognition,	 classification	 challenges,	 and	 prediction,	 primarily	 applied	 to	 solve	
supervised	 learning	 problems	 [15]	 Operating	 through	 the	 mapping	 of	 input	 to	
output	 in	 a	unidirectional	 flow	of	data	and	 calculations,	MLP	 typically	 comprises	
three	 layers:	 an	 input	 layer,	 an	 output	 layer,	 and	 at	 least	 one	 intervening	 layer	
known	as	a	hidden	layer	[16]	These	layers	are	fully	connected,	with	the	input	layer	

receiving	 signals	 from	 the	 external	 environment,	 hidden	 layers	 executing	
arithmetic	operations	from	input	to	output,	and	the	output	 layer	making	decisive	
predictions.	Each	layer	features	nodes	or	neurons,	and	the	MLP	workflow	involves	
four	key	steps.	First,	the	input	data	is	propagated	from	the	input	layer	to	the	output	
layer.	Second,	MLP	learns	through	weight	updates	between	neurons,	employing	a	
backpropagation	 algorithm	 after	 processing	 the	 input	 data	 for	 each	 node	 [14].	
Third,	 errors	 are	 calculated	 by	 assessing	 the	 disparity	 between	 predicted	 and	
known	 classes,	 employing	 supervised	 learning	 to	 minimize	 these	 errors.	 Lastly,	
these	 steps	 iterate	 over	multiple	 cycles	 to	 refine	 and	 perfect	 the	weights	 in	 the	
learning	process.		MLP	structure	described	in	Figure	1.	

4.2 Recurrent	Neural	Networks	(RNN)	
RNN,	 encompassing	 Feedforward	 Neural	 Networks,	 can	 transmit	 data	 across	
various	 time	 steps,	 as	 illustrated	 in	 Figure	 2..	 Unlike	 feedforward	 propagation,	
which	allows	information	to	flow	in	a	singular	direction,	RNN	employs	recursion,	
creating	 a	 loop	 of	 information	 as	 depicted	 in	 Figure	 2.	 This	 recursive	 approach	
involves	 scanning	 the	 entire	 data	 from	 left	 to	 right,	 with	 shared	 parameters	 for	
each	 time	 step	 [17].	Despite	 its	merits,	RNN	has	 a	 limitation	 –	 it	 relies	 solely	 on	
information	 preceding	 a	 point	 in	 a	 sequence	 for	 predictions,	 neglecting	 any	
information	occurring	later	in	the	sequence.	

Figure	1.multi-layer	perceptron	structure	
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4.3 	Convolutional	Neural	Networks	(CNN)	
Inspired	by	the	visual	processing	in	animals'	brains,	CNN	is	a	sophisticated	multi-
layer	 neural	 network	 pioneered	 by	 LeCun	 et	 al.	 Its	 primary	 application	 domains	
encompass	image	processing	and	character	recognition,	as	noted	by	[18]	,[19].	The	
architectural	framework	involves	the	initial	layer	discerning	features,	followed	by	
intermediate	 layers	 that	 amalgamate	 these	 features	 to	 generate	 high-level	 input	
characteristics,	 culminating	 in	 a	 classification	 process.	 The	 accumulated	
characteristics	 undergo	 pooling	 to	 reduce	 dimensionality,	 and	 subsequent	 steps	
involve	 convolution	 and	pooling,	 ultimately	 feeding	 into	 a	 fully	 connected	multi-
layer	perceptron	[20].		

The	 final	 layer,	 the	 output	 layer,	 employs	 back-propagation	 techniques	 to	
recognize	 the	 image's	 distinctive	 features,	 as	 elucidated	 by[21].	 CNN	 stands	 out	
due	 to	 its	 distinctive	 attributes,	 such	 as	 local	 connection	 and	 shared	 weights,	
contributing	 to	heightened	 system	accuracy	 and	performance.	 It	 surpasses	other	

deep	 learning	 techniques	 and	 stands	 as	 the	 most	 employed	 architecture.	 For	 a	
visual	representation,	refer	to	Figure	3.illustrating	the	structure	of	a	convolutional	
neural	network.	

4.4 Long	Short-Term	Memory	(LSTM)	
LSTM	networks,	 falling	under	the	umbrella	of	recurrent	neural	networks	(RNNs),	
exhibit	 a	 noteworthy	 proficiency	 in	 grasping	 long-term	 dependencies,	 as	

Figure	2.	Recurrent	Neural	Network	structure.	

Figure 3.Convalution Neural Network structure. 
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exemplified	 in	 [22].	 The	 architecture	 of	 an	 LSTM	 involves	 the	 intricate	
construction	of	a	memory	cell	utilizing	logistic	and	linear	units	with	multiplicative	
interactions.	This	design	facilitates	a	dynamic	flow	of	 information	within	the	cell:	
information	 is	 admitted	 through	 the	 input	 gate,	 expelled	when	 the	 forget	 gate	 is	
inactive,	 and	 accessed	 for	 reading	 by	 activating	 the	 output	 gate.	 Such	 nuanced	
operations	 empower	 LSTMs	 to	 effectively	 capture	 and	 retain	 information	 over	
extended	 sequences,	 showcasing	 their	 prowess	 in	 addressing	 scenarios	 with	
prolonged	dependencies.	

Utilizing	 Deep	 LSTM	 Recurrent	 Neural	 Networks	 presents	 a	 notable	
enhancement	 in	 speech	 recognition	 accuracy.	 This	 architecture	 is	 crafted	 by	
assembling	a	stack	of	LSTM	layers,	yet	 it	can	also	be	structured	without	stacking,	
resembling	a	Feedback	Neural	Network	unrolled	when	each	layer	shares	identical	
model	 parameters.	 Like	 the	 structure	 of	 Deep	 Neural	 Networks	 (DNNs),	 inputs	
may	traverse	one	or	multiple	non-linear	layers;	however,	the	distinctive	feature	is	
that	 the	 information	 from	 a	 specific	 time	 instant	 undergoes	 processing	 by	 a	
singular	 non-linear	 layer	 before	 producing	 the	 result	 for	 that	 moment.	 As	
highlighted	 in[22],	 the	 depth	 in	 deep	 LSTMs	 holds	 a	 particular	 significance.	 The	
data	 traverses	 a	 sequence	 of	 LSTM	 layers	 within	 a	 specific	 time	 frame.	 The	
incorporation	of	deep	layers	in	LSTM	RNNs	contributes	to	the	network's	ability	to	
learn	across	various	time	scales,	showcasing	the	effectiveness	of	this	approach	in	
capturing	intricate	temporal	dependencies.	
	

	
Figure	4.Long	short-term	memory	(LSTM)	structure.	

4.5 			Graph	Neural	Networks	(GNN)	
GNNs	belong	to	the	realm	of	deep	learning	algorithms	tailored	for	the	examination	
and	 interpretation	 of	 structured	 data	 encapsulated	 within	 graphs.	 Graphs,	
comprising	 interconnected	 nodes	 and	 edges,	 serve	 as	 versatile	models	 to	 depict	
relationships	and	dynamics	across	diverse	domains	like	social	networks,	biological	
systems,	 citation	 networks,	 and	 recommendation	 frameworks	 [23].	 The	 primary	
objective	of	GNNs	is	to	acquire	nuanced	representations	of	individual	nodes	within	
a	 graph[24]).	 This	 entails	 capturing	 not	 only	 the	 characteristics	 of	 a	 node's	
immediate	 surroundings	 but	 also	 discerning	 patterns	 in	 the	 broader	 structural	
context	of	the	entire	graph.	
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In	the	realm	of	GNNs,	the	process	begins	with	the	representation	of	a	graph	where	
nodes	 symbolize	 entities,	 and	 edges	 signify	 relationships	 between	 these	 entities.	
Each	 node	 is	 endowed	 with	 features,	 offering	 insights	 into	 the	 corresponding	
entity.		
	 The	 journey	 continues	 with	 node	 embeddings,	 where	 initial	 embeddings	 are	
assigned	 to	 nodes	 based	 on	 their	 features.	 GNNs	 engage	 in	 iterative	 message-
passing	 steps,	 allowing	 nodes	 to	 gather	 information	 from	 their	 neighbors	 and	
update	their	embeddings	accordingly;	this	involves	the	exchange	of	neighborhood	
information	 and	 using	 learnable	 aggregation	 functions	 such	 as	 mean,	 sum,	 or	
attention	 mechanisms	 [23].	 Stacked	 aggregation	 layers	 further	 refine	 node	
embeddings	 by	assimilating	 information	 from	 increasingly	 expansive	
neighborhoods	 to	 encapsulate	 local	 and	 global	 graph	 structures;	 some	 employ	
graph	 pooling	 layers,	 contributing	 to	 hierarchical	 representation[24].	 Ultimately,	
the	 process	 culminates	 in	 the	 output	 layer,	 where	 the	 final	 node	 embeddings	
derived	 from	 these	 intricate	 steps	 can	 be	 applied	 to	 diverse	 tasks	 such	 as	 node	
classification,	link	prediction,	or	graph	classification.	
	
4. Evaluation	Performance	
5.1 Accuracy	
Accuracy	(AC):	AC	is	a	metric	used	to	evaluate	the	performance	of	a	classification	
model.	In	machine	learning,	particularly	in	classification	tasks,	accuracy	measures	
how	well	a	model	correctly	predicts	the	labels	of	the	instances	in	the	dataset.	It	is	
described	as	in	(1).		

	 											(1)	
	

The	number	of	correct	predictions	represents	the	count	of	instances	for	which	the	
model's	 prediction	 matches	 the	 actual	 labels.	 The	 total	 number	 of	 Predictions	
refers	 to	 the	 sum	 of	 correct	 and	 incorrect	 predictions,	 representing	 the	 total	
number	of	instances	in	the	dataset.	Accuracy	is	usually	expressed	as	a	percentage,	
ranging	 from	0%	to	100%.	A	higher	accuracy	 indicates	better	performance,	with	
100%	 accuracy,	 meaning	 that	 the	 model	 made	 correct	 predictions	 for	 all	
instances[25].	

5.2 		Precision	(Pre)	
Pre	is	a	metric	in	the	realm	of	classification	that	quantifies	the	accuracy	of	positive	
predictions	by	assessing	the	ratio	of	true	positives	to	the	sum	of	true	positives	and	
false	positives.	Mathematically,	precision	is	computed	using	the	formula	[26]:	
	

																					 											(2)	

5.3 		Recall	(Rec)	
Recall,	also	referred	to	as	sensitivity,	is	a	pivotal	metric	in	classification	evaluation,	
measuring	 the	 average	 probability	 of	 achieving	 comprehensive	 retrieval.	 This	
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metric	 gauges	 the	 model's	 ability	 to	 identify	 and	 capture	 all	 relevant	 instances	
within	the	positive	class.	The	formula		is	below	[26].	
	

	 	 																								(3)	

5.4 		F-1score	(F1)	
F1	 serves	 as	 a	 harmonized	 measure,	 presenting	 a	 weighted	 average	 of	 both	
precision	 and	 recall.	 An	 ideal	 F1	 score	 attains	 a	 value	 of	 1,	 indicating	 perfect	
precision	and	recall	synchronization,	while	the	lowest	achievable	score	is	0	[17].	
	

	 											(4)	
	

In	 the	 context	 of	 classification	metrics,	 the	 components	 of	 the	 precision	 formula	
are	 delineated	 as	 follows:	 True	 Positive	 (TP)	 signifies	 instances	 accurately	
predicted	 as	 belonging	 to	 the	 positive	 class	 by	 the	 model.	 Conversely,	 True	
Negative	 (TN)	 represents	 instances	where	 the	model	 precisely	 predicts	 cases	 as	
part	of	the	negative	class—a	scenario,	for	instance,	when	non-cancerous	cases	are	
correctly	 identified	 as	 such.	 False	 Positive	 (FP)	 denotes	 instances	 erroneously	
predicted	as	part	of	the	positive	class,	like	when	a	patient	is	inaccurately	identified	
as	 having	 cancer	 when	 they	 do	 not.	 Finally,	 False	 Negative	 (FN)	 characterizes	
instances	where	the	model	incorrectly	predicts	cases	as	part	of	the	negative	class,	
such	as	when	a	patient	with	cancer	is	not	identified	as	such	by	the	model.	
	
5. Literature	Review		
Numerous	 recent	 studies	 have	 been	 made	 using	 deep	 learning	 approaches	 to	
classify	gene	expression	data;	this	section	presents	a	comprehensive	review.	
	 Researchers	 in	 [27]	 Present	 a	 novel	 approach	 called	 D-SVM	 (Deep	 support	
vector	 machine)	 integrating	 deep	 learning	 with	 the	 traditional	 SVM	 to	 predict	
breast	 cancer;	 they	 reported	 that	 their	 approaches	 outperformed	 the	 traditional	
classification,	especially	on	small-sized	datasets	such	as	the	breast	cancer	dataset,	
as	their	proposed	approach	reaches	an	accuracy	of	69.8%	while	it	reaches	69.6%	
and	59.4%	with	DNN	and	SVM,	respectively	on	the	same	dataset.	
	 In	 this	 work	 [28],	 Stacked	 denoising	 Autoencoder	 (SDAE)	 was	 employed	 to	
extract	 functional	 features	 from	 intricate	 high-dimensional	 gene	 expression	
profiles;	 the	main	 goal	 of	 the	 SDAE	model	 is	 to	 extract	 a	mapping	 that	 possibly	
decodes	the	initial	data	as	specifically	as	can	be	done	without	having	an	important	
loss	 of	 gene	 patterns.	 Subsequently,	 the	 efficacy	 of	 the	 extracted	 representation	
was	scrutinized	using	supervised	classification	models,	affirming	the	utility	of	the	
newly	derived	features	in	the	context	of	cancer	detection;	the	SDAE	features	were	
employed	on	 three	 classification	 learning	models	ANN,	 SVM,	 SVM-RBF,	 yields	 an	
accuracy	of	96.95%,	98.04%,	98.26%,	respectively.	
	 The	 analysis	 of	 tumor	 microarray	 data	 demands	 ample	 training	 models	 to	
construct	 a	 classifier	 with	 improved	 accuracy.as	 in	 [29]	 the	 scarcity	 of	 data	
Addressed	by	integrating	diverse	datasets	encompassing	multiple	types	of	cancer.	
They	 employed	 the	Multi-Task	 Deep	 Learning	 (MTDL)	 algorithm	 for	microarray	
data	analysis,	effectively	mitigating	data	scarcity	 issues.	The	application	of	MTDL	
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substantially	boosted	the	accuracy	of	the	classifier,	demonstrating	its	effectiveness	
in	accurately	(98.5%	Overall	accuracy	for	12	cancer	datasets)	identifying	the	type	
of	cancer	when	tested	across	various	cancer	datasets.	
	 T.	 Ahn	 et	 al	 Trained	 deep	 neural	 network	 (DNN)	 to	 differentiate	 between	
cancer	and	normal	samples	and	then	employ	diverse	gene	selection	strategies	on	
TCGA	and	GEO	datasets	to	yield	an	accuracy	of	99.7%.	The	selection	encompassed	
therapeutic	 target	 genes	 from	 commercial	 cancer	 panels	 and	 genes	 within	 NCI-
curated	 cancer	 pathways.	 A	 systematic	 analysis	 method	 was	 proposed	 for	
interpreting	 the	 trained	 deep	 neural	 network.	 This	 approach	 was	 subsequently	
applied	to	identify	the	genes	that	predominantly	contribute	to	classifying	cancer	in	
individual	samples[30].		
	 unsupervised	 feature	 learning	 framework	that	combines	principal	component	
analysis	 and	 an	 auto-encoder	 neural	 network	 to	 extract	 unique	 characteristics	
from	gene	expression	profiles	was	introduced	in	[31].	These	features	are	then	used	
to	construct	an	ensemble	classifier	(PCA-AE-Ada)	based	on	the	AdaBoost	algorithm	
for	 predicting	 clinical	 outcomes	 in	 breast	 cancer.	 The	 proposed	 method	 is	
compared	to	a	baseline	classifier	(PCA-Ada)	using	the	same	learning	strategy	but	
with	 different	 training	 inputs.	 Evaluation	 of	 multiple	 breast	 cancer	 datasets	
demonstrates	that	the	deep	learning	approach	outperforms	other	gene	signature-
based	algorithms	 in	predicting	clinical	outcomes.	Their	proposed	classifier's	best	
performance	 was	 on	 the	 GSE11121	 dataset	 with	 an	 accuracy	 of	 85%,	 and	 the	
lowest	 accuracy	 was	 on	 GSE2034	with	 75%	 compared	 to	 the	 baseline	 classifier	
with	an	accuracy	of	68%	and	65%,	respectively,	on	the	same	datasets.		
	 	a	 novel	 approach	 was	 proposed	 by	 [32]	 utilizing	 Convolutional	 Neural	
Networks	 (CNN)	 coupled	with	 spectral	 clustering	 information	processing	 for	 the	
classification	 of	 lung	 cancer.	 The	method	 integrates	 protein	 interaction	 network	
data	and	gene	expression	profiles,	demonstrating	the	effectiveness	of	this	spectral-
convolutional	neural	network.	
	 the	 efficacy	 of	 a	 convolutional	 neural	 network	 (CNN)	 based	 deep	 learning	
algorithm	 for	 classifying	 microarray	 data	 Explored	 by	 researcher	 in	 [33].	 This	
investigation	 included	 a	 comparative	 analysis	with	 other	 established	 techniques,	
namely	Vector	Machine	Recursive	Feature	Elimination	and	an	enhanced	Random	
Forest	 approach	 (mSVM-RFE-iRF	 and	 varSeIRF).	 The	 findings	 revealed	 that	 the	
performance	 of	 the	 CNN	 varied	 across	 different	 datasets,	 demonstrating	 that	 it	
does	 not	 universally	 outperform	 all	 other	 methods.	 Despite	 this	 variability,	 the	
experimental	 results	 on	 cancer	 datasets	 consistently	 highlighted	 the	 CNN's	
superiority	 in	 terms	 of	 accuracy	 (81.53%	 overall	 accuracy	 for	 the	 ten	 cancer	
datasets)	and	its	ability	to	minimize	gene-related	features	when	classifying	cancer,	
as	compared	to	the	hybrid	mSVM-RFE-iRF	approach.	
	 Researchers	 in	 [34]	 Outline	 an	 innovative	 framework	 for	 supervised	 cancer	
classification	termed	Deep	Cancer	Subtype	Classification	(DeepCC).	This	approach	
leverages	deep	learning	to	analyze	functional	spectra,	quantifying	the	activities	of	
biological	pathways	for	precise	and	effective	cancer	subtype	classification.	
	 D.	Q.	Zeebaree,	H.	Haron,	and	A.	M.	Abdulazeez	[35]	 Proposed	a	new	approach	
that	 revolves	 around	 modeling	 enduring	 unit	 cells	 through	 Long	 Short-Term	
Memory	(LSTM).	LSTM,	a	subtype	of	Recurrent	Neural	Network	(RNN)	within	the	
realm	 of	 Artificial	 Neural	 Networks	 (ANN),	 is	 a	 suitable	 framework.	 Employing	
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LSTM	 proves	 to	 be	 a	 pragmatic	 strategy	 for	 forecasting	 process	 durations,	
especially	in	scenarios	where	the	classifier's	learning	from	experience	is	uncertain	
and	extended	intervals	between	significant	events	are	unpredictable;	the	model	in	
this	work	was	 tested	 on	Colon,	 lung,	 SRBCT,	 Lymphoma,	 Leukemia	 and	prostate	
datasets	 from	 gene	 expression	 profile	 (GEP)	 datasets	 with	 accuracy	 of	 89.6%,	
88.3%,	85.3%,	84.7%,	77.6%,	and	75.7%.	
	 Investigation	 of	 classification	methods	 has	 evaluated	 the	 accuracy	 of	 several	
potent	 deep	 learning	 algorithms,	 including	 the	 Deep	 Neural	 Network	 (DNN),	
Recurrent	 Neural	 Network	 (RNN),	 Convolutional	 Neural	 Network	 (CNN),	 and	 an	
enhanced	Deep	Neural	Network	incorporating	preprocessing	techniques.	Has	been	
made	by	O.	Ahmed	and	A.	Brifcani,	[36],	to	address	model	over-fitting,	they	apply	a	
Dropout	 augmentation	mechanism	with	DLBCL,	 Prostate,	 and	Leukemia	datasets	
on	 DNN,	 which	 effectively	 overcame	 the	 associated	 challenges,	 as	 the	 accuracy	
results	 came	 as	 follows:	DLBCL	=98.4%,	Prostate	 =93.2%,	 Leukemia	=	 99%,	 and	
Colon	=	91.4%.	
	 Deep	 feedforward	method	 to	 effectively	 classify	microarray	 cancer	 data	 into	
distinct	 classes	 for	 subsequent	 diagnostic	 purposes	 employing	 a	 7-layer	 deep	
neural	network	architecture	with	varied	parameters	tailored	to	microarray	cancer	
datasets.	 Was	 developed	 by	 [37],A	 widely	 recognized	 dimensionality	 reduction	
technique,	 namely	 principal	 component	 analysis,	 was	 implemented	 to	 mitigate	
challenges	 related	 to	 small	 sample	 size	 and	 dimensionality.	 Feature	 values	were	
standardized	 using	 the	 Min–Max	 approach,	 and	 the	 proposed	 methodology	
underwent	validation	on	eight	standard	microarray	cancer	datasets.	Binary	cross-
entropy	was	utilized	 for	 loss	measurement,	 and	optimization	 employed	adaptive	
moment	estimation.		
	 a	 stochastic	 gradient	 descent-based	 (SGD-based)	 deep	 neural	 network	 was	
employed	 by	 researcher	 in	 [38]	 on	 the	 ten	 most	 common	 UCI	 (University	 of	
California	Irvine)	Cancer	dataset	yields	an	accuracy	of	92%;	this	study	utilizes	deep	
learning	techniques	with	a	Softmax	activation	function.	This	approach	is	applied	to	
the	condensed	features,	specifically	genes,	to	enhance	the	classification	of	diverse	
samples	based	on	their	gene	expression	levels.	
		 Researcher	in	[39]	,	[40]	used	deep	transfer	learning	with	convolutional	neural	
network	on	Lung	Cancer,	11	Datasets	Cancer	types	reaching	an	accuracy	of	73.26%	
and	98%,	while	 in	 [41].	 1D	CNN	model	 and	 a	 2D	CNN	model	was	proposed;	 the	
two-dimensional	CNN	performed	 the	best	with	an	accuracy	of	98.86%,	while	 the	
one-dimensional	CNN	is	only	80.36%.	
	 the	SVM-mRMRe	model,	was	 Introduced	 in	 [42]	which	 is	a	novel	approach	 to	
gene	selection	in	cancer	research	from	high-dimensional	microarray	data.	SVM	for	
feature	 ranking	 and	mRMRe	 for	 improved	 selection	 are	 combined	 in	 this	 hybrid	
method.	After	being	tested	on	eight	different	cancer	datasets,	SVM-mRMRe	showed	
increased	 relevance	 and	 accuracy,	 consistent	 with	 known	 biological	 knowledge.	
Understanding	 cancer	 pathways	 may	 be	 improved	 by	 utilizing	 the	 model's	
emphasis	on	biologically	relevant	gene	selection.	
	 The	 PCC-DTCV	 model,	 a	 hybrid	 machine-learning	 technique	 designed	 to	 use	
complex	microarray	gene	expression	data	for	cancer	classification.	Was	presented	
by	researchers	in	[43]	its	main	advantages	was	the	Awareness	of	the	difficulties	of	
handling	high-dimensional	data,	the	model	uses	Pearson's	correlation	to	facilitate	
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effective	gene	selection	and	optimizes	a	Decision	Tree	classifier	using	Grid	Search	
CV.	 The	 PCC-DTCV	 model	 was	 tested	 on	 seven	 cancer	 datasets	 and	 showed	
impressive	specificity	and	accuracy.	It	also	successfully	reduced	the	dimensionality	
of	the	data	while	identifying	critical	genes	for	cancer	classification.	
	 Researchers	 in	 [44]	 proposed	 a	 novel	 AIFSDL-PCD	 methodology	 for	 the	
identification	 and	 categorization	 of	 PCa.	 This	 innovative	 technique	 integrates	
distinct	 phases,	 including	 preprocessing,	 feature	 selection	 utilizing	 CIWO,	
classification	through	DNN,	and	hyperparameter	optimization	using	RMSprop.	The	
utilization	 of	 CIWO	 for	 feature	 selection	 contributes	 to	 a	 reduction	 in	
computational	 complexity	 and	 enhancement	 of	 classification	 accuracy,	 tested	 on	
the	prostate	dataset	with	an	accuracy	of	96%.	
	 A	novel	 feature	 selection	 approach,	 termed	 Intersection-Based	Three	Feature	
Selection	 Methods	 (ITFS),	 has	 been	 developed	 by	 [26]	 to	 strategically	 identify	
optimal	 features	 (genes)	 for	 classification	 while	 concurrently	 reducing	 the	
dimensionality	 of	 gene	 expression	 data.	 ITFS	 incorporates	 three	 distinct	 feature	
selection	 techniques,	 namely	 Mutual	 Information	 (MI),	 F-ClassIf,	 and	 Minimum	
Redundancy	Maximum	Relevance	(mRMR).	By	employing	the	intersection	concept,	
ITFS	selectively	 identifies	genes	that	are	concurrently	chosen	by	all	 three	feature	
selection	methods.	These	selected	genes	 then	serve	as	 identifiers	 for	 training	 the	
classifier	model.	
	 Perceptron	 (MLP)	 compared	 to	 the	 standalone	 use	 of	MLP.	 This	 underscores	
the	enhanced	performance	achieved	through	the	synergy	of	 ITFS	and	MLP	 in	 the	
classification	 process.	 In	 the	 same	 year,	 another	 research	 published	 by	 [45]	
reached	an	accuracy	of	98%	using	Fuzzy	Gene	Selection	(FGS).	This	novel	approach	
integrates	 Mutual	 Information,	 F-ClassIf,	 and	 Chi-squared	 feature	 selection	
techniques	 to	 rank	 genes	 based	 on	 their	 importance	 in	 cancer	 classification.	
Fuzzification	and	Defuzzification	techniques	are	then	applied	to	consolidate	these	
rankings	 into	a	single	optimal	score	for	each	gene.	FGS	is	particularly	effective	 in	
multi-class	scenarios.	A	unique	Fuzzy	classifier	is	developed	to	address	convergent	
decisions	in	classifiers,	leveraging	contributions	from	traditional	deep	classifiers	at	
individual	nodes.	This	combined	approach	enhances	the	robustness	and	accuracy	
of	predictions	in	cancer	classification.	
	 pioneering	optimization	 strategy,	PSCS,	 in	 conjunction	with	deep	 learning	 for	
classifying	 brain	 tumors	 presented	 by	 A.	 A.	 Joshi	 and	 R.	 M.	 Aziz[46].	 The	 PSCS	
enhances	the	classification	process	by	refining	Particle	Swarm	Optimization	(PSO)	
by	 integrating	 the	 Cuckoo	 Search	 (CS)	 algorithm.	 Subsequently,	 deep	 learning	 is	
used	to	classify	gene	expression	data	associated	with	brain	tumors,	employing	the	
PSCS	 optimization	 technique	 to	 identify	 distinct	 groups	 or	 classes	 relevant	 to	
specific	 tumor	 types.	 When	 combined	 with	 deep	 learning,	 the	 proposed	
optimization	 approach	 attains	 significantly	 enhanced	 classification	 accuracy	
(98.7%)compared	 to	 existing	 deep	 learning	 and	 machine	 learning	 models,	 as	
assessed	 through	 various	 evaluation	metrics	 such	 as	 Recall,	 Precision,	 F1-Score,	
and	the	confusion	matrix.	
	 the	 development	 of	 a	 novel	 Multidimensional	 Fuzzy	 Deep	 Learning	 (MFDL)	
approach	was	introduced	in[47],	to	meticulously	identify	a	subset	of	crucial	genes.	
This	 involved	 integrating	 fuzzy	 concepts	 seamlessly	 into	 filter	 and	 wrapper	
methods,	 enabling	 the	 selection	 of	 significant	 genes.	 Subsequently,	 these	 chosen	
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genes	were	 employed	 to	 train	 the	model,	 enhancing	overall	 accuracy.	The	MFDL	
methodology	 further	 extended	 its	 impact	 by	 incorporating	 a	 fuzzy	 classifier,	
thereby	 refining	 cancer	 classification	 accuracy;	 extensive	 experimentation	 and	
validation	 were	 conducted	 on	 six	 distinct	 gene	 expression	 datasets,	 and	 the	
outcomes	 affirm	 the	 effectiveness	 of	 this	 methodology	 across	 diverse	 cancer	
datasets	as	it	yields	98%	accuracy.	
	 This	 research	 [48]	 introduces	 an	 innovative	 hybrid	 methodology	 for	 gene	
selection	 in	 cancer	 classification,	 termed	 CSSMO	 (Cuckoo	 Search	 Spider	Monkey	
Optimization).	The	fitness	of	 the	Spider	Monkey	Optimization	(SMO)	algorithm	is	
tailored	through	integration	with	the	Cuckoo	Search	Algorithm	(CSA),	resulting	in	
CSSMO.	This	approach	leverages	the	strengths	of	both	metaheuristic	algorithms	to	
efficiently	 identify	 a	 subset	 of	 genes	 crucial	 for	 early-stage	 cancer	prediction.	To	
refine	 the	 CSSMO	 algorithm's	 accuracy,	 a	 cleaning	 process	 is	 implemented	 using	
the	Minimum	Redundancy	Maximum	Relevance	 (mRMR)	 technique.	This	process	
aims	to	reduce	gene	expression	noise	in	cancer	datasets,	enhancing	the	robustness	
of	 the	 selected	 gene	 subset.	 Subsequently,	 deep	 learning	 (DL)	 is	 employed	 to	
classify	these	gene	subsets.	Eight	microarray	gene	expression	datasets	were	used.		
		 Summary	of	the	studies	using	deep	learning	approaches	were	applied	to	gene	
expression	data	are	illustrated	in	Table2.		

Table	2.Summary	of	studies	used	deep	learning	approaches	to	classify	gene	
expression	data.	

Ref	 year	 Dataset	 model	 Acc.%	 Pros	 Cons	
[27]	 2017	 Breast	

cancer	
Deep-SVM	 69.8	 Direct	 clinical	 significance,		

utilization	 of	 large	 datasets	
(TCGA)	Cancer	Genome	Atlas	,	and	
an	 complete	 evaluation	 through	
several	performance	indicators.	

Potential	 complexity	 is	 brought	 about	
by	 combining	SVM	with	deep	 learning,	
the	 lack	 of	 comparison	 analysis	 with	
alternative	 models,	 the	 possibility	 of	
overfitting	 when	 using	 deep	 learning	
on	 high-dimensional	 data,	 and	 issues	
with	clinical	interpretability.	

[28]		 2017	 Breast	
cancer	

Stacked	
Denoising	
Autoencoder	
(SDAE)	

96.95	
98.0498.
26	

The	 promise	 for	 better	 cancer	
diagnosis	 through	 applying	
Stacked	 Denoising	 Autoencoders	
(SDAE)	 to	 extract	 significant	
features	 from	 high-dimensional	
gene	 expression	 profiles.	
Additionally,	 the	 technique	
identified	 a	 group	 of	 highly	
interacting	 genes	 as	 possible	
cancer	biomarkers.	

Obstacles	 include	 the	 necessity	 for	
huge	 datasets	 and	 additional	
confirmation	 of	 the	 discovered	
biomarkers.	Furthermore,	 even	 though	
deep	 learning	 models	 may	 be	 scaled,	
they	need	a	lot	of	processing	power.	

[29]		 2017	 12	
Cancer	
datasets	

multi-task	
deep	
learning	
(MTDL)	

overall	
accuracy	
of	98.5.	

In	 the	 face	 of	 sparse	 gene	
expression	 data,	 the	 paper	
introduces	 a	 novel	 Multi-task	
Deep	 Learning	 (MTDL)	 algorithm	
specifically	 for	 tumor	
classification.	 By	 effectively	
integrating	data	from	many	kinds	
of	 cancer,	 this	 method	 tackles	
data	 shortages	 head-on	 and	
produces	 more	 resilient	 models.	
Compared	 to	 standard	
approaches,	 MTDL	 greatly	
improves	 diagnostic	 accuracy	

	The	 hybrid	 model	 has	 drawbacks,	
including	 higher	 processing	
requirements	 and	 specialized	
knowledge	 requirements.	 To	 ensure	 it	
is	 resilient,	 more	 thorough	 testing	
using	 a	 variety	 of	 datasets	 and	
techniques	 would	 be	 beneficial.	
Furthermore,	 due	 to	 the	 inherent	
complexity	 of	 the	 model,	 there	 is	 a	
possibility	of	overfitting,	which	calls	for	
cautious	 regularization.	 Additionally,	
there	is	still	concern	about	the	model's	
interpretability	 because	 it	 may	 need	
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across	 various	 cancer	 types	 by	
collecting	 shared	 and	 unique	
traits	among	various	cancer	types.	

help	 understanding	 or	 explaining	 the	
judgments	 and	 learned	
representations.	

[30]			 2018	 TCGA,	
GEO	

DNN	 99.7%	 The	 paper	 offers	 a	 novel	 deep-
learning	 method	 for	 identifying	
cancer	 using	 extensive	 gene	
expression	 data.	 The	 (DNN)	
showed	 remarkable	 accuracy	 in	
cancer	 identification	 using	 data	
from	 reliable	 databases.	 The	 goal	
of	 the	 project	 is	 to	 create	 a	
universally	 applicable	 cancer	
classifier.	 Furthermore,	 utilizing	
large	 datasets,	 a	 proposed	
interpretation	method	sheds	light	
on	 the	 functions	 performed	 by	
genes	 in	 cancer,	 which	 may	 lead	
to	 a	 more	 profound	
understanding	 and	 better	
treatments.	
	

Even	 though	 DNNs	 are	 extremely	
powerful,	 they	 can	 be	 difficult	 to	
interpret	and	comprehend	some	genes.	
Disparities	 between	 data	 sources,	 like	
RNA-Seq.	 and	 microarray,	 might	 need	
fixing	 with	 consistency.	 The	 DNN's	
capacity	 to	 generalize	 new	 data	 raises	
some	 questions.	 Furthermore,	 even	
while	 the	 model	 is	 good	 at	 classifying	
data,	it	could	not	always	provide	a	deep	
molecular	understanding	of	cancer.	

[31]		 2018	 Breast	
cancer	

DNN	 85,	75	 Deep	 learning	 algorithms	 are	
integrated	 into	 the	 new	 method,	
which	 shows	 improved	
performance	 in	 biomedical	
applications.	 The	 PCA-AE-Ada	
technique	 outperforms	 other	
algorithms	 in	 terms	 of	 accuracy	
and	 other	 evaluation	 metrics	
across	 several	datasets	 related	 to	
breast	cancer.		

The	 deep	 learning	 model's	 intricacy	
could	 make	 it	 more	 difficult	 to	
interpret.	 With	 more	 diverse	 datasets,	
the	generalization	of	 the	method	could	
be	 improved.	 Potential	 overfitting	 in	
deep	 learning	 models	 is	 a	 concern,	
particularly	when	data	is	lacking.	

[32]		 2019	 Lung	
cancer	

CNN	 83.15.	 The	study	surpasses	conventional	
methods	with	an	accuracy	rate	of	
83.15%	 and	 blends	 spectral	
clustering	 with	 convolutional	
neural	 networks	 for	 enhanced	
biological	 data	 analysis.	 It	
properly	 maintains	 protein	
network	 topological	 links	 and	
tackles	 issues	 unique	 to	
processing	 omics	 data.	 The	
method	 is	 flexible	enough	 to	deal	
with	different	biological	networks	
and	can	potentially	integrate	with	
multi-omics	data.	

Although	 the	 emphasis	 is	 on	 lung	
cancer	 particularly,	 adjustments	 may	
be	 needed	 to	 make	 it	 applicable	 to	
other	 cancers.	 Furthermore,	 deep	
learning	 is	 resource-intensive,	 putting	
computational	demands	on	models	that	
may	 need	 to	 be	more	 transparent	 and	
easily	 interpreted.	 Furthermore,	
because	 of	 its	 intrinsic	 complexity,	 the	
model	may	be	less	able	to	generalize	to	
new	data	due	to	overfitting.	

[33]		 2019	 10	
cancer	
datasets	

CNN	 81.53	 With	 CNNs,	 the	work	 leverages	 a	
state-of-the-art	 method	 designed	
for	 the	 sophisticated	
interpretation	 of	 intricate	
microarray	 data,	 demonstrating	
impressive	precision,	especially	in	
certain	 cancer	 datasets.	 CNNs	
have	 the	 innate	 ability	 to	 handle	
large	 and	 complex	 datasets	
necessary	for	efficient	microarray	
analysis.	 Furthermore,	 these	
networks	 automatically	 identify	

CNNs	 are	 powerful,	 but	 they	 have	
drawbacks	 as	 well.	 For	 example,	 they	
need	 a	 lot	 of	 processing	 power,	which	
makes	 large	datasets	difficult	 to	use.	 It	
can	 be	 intimidating	 to	 deploy	 them,	
particularly	 for	 those	 not	 experienced	
with	 deep	 learning.	 Furthermore,	 the	
complex	architecture	of	CNNs	increases	
the	likelihood	of	overfitting,	which	may	
jeopardize	the	model's	generalizability.	
Moreover,	 their	 intrinsic	 "black	 box"	
nature	 may	 mask	 the	 biological	
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and	 utilize	 pertinent	 features,	
reducing	 human	 participation	
requirements.	 Their	 proven	
adaptability	 to	 different	 cancer	
datasets	highlights	their	potential	
for	further	field	applications.	

discoveries	beneath.	Interestingly,	CNN	
performance	 varies	 with	 the	 cancer	
dataset,	 indicating	 differences	 in	
performance	due	to	dataset	complexity.	

[34]		 2019	 Cancer	
subtype
s	

(DeepCC)	 90	 By	 utilizing	 the	 power	 of	
advanced	 deep	 learning,	 DeepCC	
improves	 cancer	 subtype	
classifications	 to	 unprecedented	
levels.	 Its	 architecture	 is	 notable	
for	 its	 ability	 to	 withstand	
common	 problems	 like	 platform	
variances,	 batch	 errors,	 and	 data	
gaps.	 Molecular	 subtyping	
accuracy	 increases	 the	possibility	
of	 tailored	 cancer	 therapies.	
DeepCC	 performs	 remarkably	
better	 in	 tests	 than	 traditional	
techniques,	 demonstrating	 its	
applicability	 in	 real-world	
scenarios.	 Moreover,	 its	 quick	
analysis	 of	 single	 samples	 makes	
it	 an	 effective	 tool	 for	 expediting	
clinical	choices.	

Although	 DeepCC	 has	 sophisticated	
cancer	 subtype	 classification	 skills,	 its	
technological	 complexity	 and	
interpretability	 pose	 obstacles.	
Concerns	 regarding	 biases	 are	 raised	
by	the	model's	reliance	on	certain	gene	
expression	 datasets,	 and	 rigorous	
validation	 is	 necessary	 due	 to	 its	
propensity	 for	 overfitting.	 More	
widespread	validation	across	a	range	of	
patient	populations	and	cancer	types	is	
necessary	for	its	clinical	significance	to	
be	fully	understood.	

[35]		 2019	 six	
datasets	
from	
(GEP)	
datasets	

RNN	[LSTM-
AIRS]	

89.6,	
88.3,	
85.3,	
84.7,	
77.6,	
75.7	
99.3	

The	 Artificial	 Immune	
Recognition	 System	 (AIRS)	 and	
Long	Short-Term	Memory	(LSTM)	
networks	 are	 combined	 in	 this	
paper	 to	 present	 a	 unique	
bioinformatics	 approach	 for	
finding	 tumor-related	 genes.	
Promisingly,	 the	 suggested	
PAIRS2	 algorithm	 outperformed	
other	 techniques	 on	 the	
Lymphoma	 dataset	 with	 a	 high	
accuracy	of	99.3%.	

Concerns	 have	 been	 raised	 regarding	
possible	 overfitting	 in	 the	 study	
because	of	its	heavy	focus	on	obtaining	
high	 accuracy.	 In	 addition,	 the	
evaluation's	breadth	and	depth	may	be	
limited	by	 employing	 linear	 classifiers.	
Moreover,	 the	 significance	 of	 the	
results	might	 be	 limited	 to	microarray	
datasets,	 which	 could	 restrict	 their	
applicability	 to	 other	 kinds	 of	
experimental	data.	

	
[36]		

2019	 DLBCL,	
Prostate
,	
Leukemi
a	and	
Colon	

improved-
DNN	

98.4,	
93.2,	99,	
91.4	

The	 research	 explores	 the	 use	 of	
advanced	 deep	 learning	
algorithms	 for	 bioinformatics	
classification,	 highlighting	 the	
high	 accuracy	 of	 an	 improved	
Deep	 Neural	 Network	 on	 various	
datasets	 bolstered	 by	 thorough	
methods	 and	 preprocessing	
strategies.	

Although	 the	 work	 provides	 insights	
into	 bioinformatics,	 it	 emphasizes	
technical	 rather	 than	 biological	
elements,	 is	 unclear	 on	 dataset	
generalizability,	 and	 might	 use	 more	
visual	aids	for	better	comprehension.	

[37]		 2020	 8	
microar
ray	
cancer	
datasets	

7-layer	deep	
neural	
network	
architecture	

90	 The	 work	 presents	 a	 novel	
method	 based	 on	 multivariate	
beta	 mixtures	 that	 minimize	 the	
requirement	 for	 human	 data	
labeling	due	 to	 its	parameter-less	
design,	hence	providing	efficiency.	
Empirical	 validation	 based	 on	
real-world	data	 from	widely-used	
community	 Q&A	 sites	 highlights	
the	method's	potential	application	
on	various	online	platforms.	

Although	 it	 shows	 promise,	 a	 more	
thorough	 assessment	 against	 current	
techniques	 is	 required,	 particularly	
regarding	 its	 scalability	 and	
performance	on	larger	or	more	diverse	
datasets.	
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[38]		 2020	 10	most	
common	
UCI	
Cancer	
Datasets	

Elephant	
search	
optimization	
based	deep	
learning	
approach	

92	 The	 paper	 offers	 a	 unique	
approach	 to	 gene	 expression	
selection	 that	 combines	 deep	
learning	 and	 optimization	 based	
on	Elephant	search.	 It	performs	a	
comprehensive	 analysis	 on	
multiple	 cancer	 microarray	
datasets	 and	 compares	 favorably	
with	 conventional	 techniques	 to	
demonstrate	 its	 efficacy.	
Additionally,	 the	 study	 uses	
stringent	 statistical	 testing,	
indicating	 its	 applicability	 for	
more	 general	 uses	 in	
bioinformatics	and	clinical	cancer	
diagnosis.	

Its	use	seems	to	be	mainly	restricted	to	
the	cancer	datasets	under	study,	which	
begs	 the	 question	 of	 its	 wider	
generalizability.	 Ten-fold	 cross-
validation	 is	 used,	 but	 worries	
regarding	 overfitting	 and	 the	 model's	
capacity	 to	 adjust	 to	 fresh	 data	 still	
exist.	 More	 validation	 is	 necessary,	
particularly	 on	 bigger	 datasets	 or	 in	
clinical	contexts.	

[39]		 2020	 Lung	
Cancer	

Deep	
Transfer	
Learning	
+CNN	

73.26	 The	 study	 uses	 CNNs	 to	 analyze	
gene-expression	 data,	 pre-
training	 on	 a	 large	 Pan-Cancer	
dataset,	 and	 then	 fine-tuning	 for	
individual	 cancer	 types	 using	 a	
transfer	 learning	 approach.	 It	
better	 captures	 characteristics	by	
converting	RNA-Seq.	samples	into	
gene-expression	pictures.	In	order	
to	 advise	 prospective	 customized	
treatments	 for	 lung	 cancer,	 The	
technique	aimed	to	predict	PFI	for	
lung	cancer	and	performed	better	
than	 other	 machine	 learning	
methods	 with	 regards	 to	 AUC	
values.	

Implementing	 and	 understanding	 the	
method	 can	 be	 difficult	 for	 individuals	
unfamiliar	 with	 the	 field.	 Its	 heavy	
reliance	 on	 large	 amounts	 of	 data	 for	
sufficient	 model	 training	 raises	
questions	regarding	 its	generalizability	
across	 various	 cancer	 types	 and	
therapeutic	 settings.	 Furthermore,	 the	
approach	 is	 computationally	 intensive	
and	 is	 dangerous	 to	 overfit,	 which	
could	 result	 in	 less-than-ideal	
performance	on	fresh	data.	

[40]			 2020	 11	
Cancer	
Datasets		
	

Deep	
Transfer	
Learning	
+CNN	

98.9	 GeneXNet	 exhibits	 a	 remarkable	
98.9%	 accuracy	 over	 33	 cancer	
types	 from	 26	 organ	 sites.	 Most	
notably,	 it	 does	 away	 with	 the	
lengthy	 and	 conventionally	
required	 gene	 feature	 selection	
process.	 Moreover,	 a	 transfer	
learning	 feature	 makes	 it	 more	
flexible,	 enabling	 it	 to	 adapt	 to	
tumors	with	less	information.	

GeneXNet	 presents	 challenges	 with	
data	constraints,	potentially	limiting	its	
broad	 applicability.	 Concerns	 arise	
regarding	 overfitting	 and	 the	 model's	
ability	 to	 generalize	 without	 further	
validation.	Moreover,	its	computational	
demands	 are	 significant,	 and	 the	
inherent	 complexity	 of	 the	 model	
makes	 its	 decisions	 less	 interpretable	
due	to	its	"black	box"	nature.	

[42]		
	

2021	 8	
microar
ray	
datasets	

SVM-mRMRe	
model	

Average	
99	

A	 thorough	 approach	 to	
microarray	 data	 analysis	 is	
provided	 by	 SVM-mRMRe,	 which	
exhibits	 improved	 classification	
accuracy	 for	 cancer	 tissue	 in	
various	datasets.	 Its	clinical	value	
is	 reinforced	 by	 the	 gene	
selections	 that	align	with	existing	
biomedical	 knowledge.	 Notably,	
the	 model	 consistently	 performs	
well	 across	 various	 datasets	 and	
adeptly	 negotiates	 the	 challenges	
of	 high	 dimensionality	 and	
constrained	 sample	 sizes	 in	
microarray	data.	

Due	 to	 its	 dual-stage	 and	 ensemble	
design,	 SVM-mRMRe	 may	 require	
careful	 parameter	 tweaking	 and	
provide	 computational	 hurdles.	 Its	
complexity	 may	 make	 it	 difficult	 to	
comprehend	 the	 underlying	 biological	
processes.	 Additionally,	 even	 if	 SVM-
mRMRe	 performs	 admirably,	
comparative	 assessments	 point	 to	
situations	 where	 alternative	 methods	
might	perform	better.	Furthermore,	the	
method's	 efficacy	 may	 differ	 based	 on	
the	 dataset,	 which	 could	 restrict	 its	
broad	use.	
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[43]		 2021	 7	cancer	
datasets	

PCC-DTCV	
model	

96	 For	 efficient	 gene	 selection,	 the	
model	 uses	 Pearson's	 correlation	
coefficient	 (PCC),	 which	 lowers	
the	 complexity	 of	 the	 data.	 It	
demonstrates	 adaptability	 and	
relevance	 when	 tested	 on	 seven	
different	 microarray	 cancer	
datasets,	 and	 metrics	 like	
specificity	and	accuracy	bolster	its	
effectiveness.	 Furthermore,	
interpretability	 is	 improved	 via	
decision	 trees	 (DT),	 and	 their	
efficiency	 is	 optimized	 using	 grid	
search	 and	 other	 optimization	
approaches.	

Grid	 Search	 and	 multi-dataset	
processing	 make	 the	 model's	
implementation	 computationally	
demanding.	 Although	 accuracy	 and	
AUC	 are	 prioritized,	 false	 positive	 and	
false	 negative	 rates—crucial	 for	
medical	 applications—are	 noticeably	
neglected.	 Moreover,	 the	 multi-phase	
procedure,	 which	 involves	
preprocessing	 and	 feature	 selection	
utilizing	 Pearson's	 correlation	
coefficient	 (PCC),	 introduces	 intricacy	
and	 may	 exclude	 certain	 pertinent	
genes	in	particular	situations.	

[41]		 2022	 Liver	
cancer	

Deep	
Transfer	
Learning	
+CNN	

98.86	
80.36	

H	 By	 employing	 an	 optimized	
VGG16	 model,	 the	 technique	
demonstrated	 remarkable	 100%	
accuracy	 in	 distinguishing	 liver	
cancer	 from	 normal	 sequences,	
highlighting	 its	 effectiveness	 in	
DNA	sequence	analysis.	The	study	
provides	a	diverse	and	potentially	
comprehensive	 representation	 of	
genomic	 data	 by	 utilizing	 three	
distinct	 numerical	 mapping	
techniques	 and	 combining	 CNN	
models	such	as	VGG16.	Moreover,	
the	research	gains	credibility	and	
eases	 further	 confirmation	
through	 the	 reliable	 NCBI	
database.	

here	 are	 doubts	 regarding	 the	model's	
generalizability	 to	 other	 applications	
due	 to	 the	 study's	 reliance	 on	 a	 tiny	
dataset	that	only	includes	four	genes—
four	 cancerous	 and	 four	 healthy.	 The	
complex	 fusion	 of	 several	 mapping	
techniques	 and	 deep	 learning	
methodologies	may	present	difficulties	
for	 those	 unfamiliar	 with	 the	 field.	
Furthermore,	 there	 isn't	 a	 thorough	
analysis	of	the	research's	shortcomings	
and	 possible	 dangers.	 Furthermore,	
achieving	a	100%	accuracy	score	raises	
concerns	 about	 how	 well-suited	 and	
consistent	 the	 model	 is	 for	 use	 with	
bigger	or	more	diverse	datasets.	

[44]		 2022	 Prostate	
Cancer	

AIFSDL-PCD	 96.44	 The	 efficacy	 of	 the	 AIFSDL-PCD	
approach	 was	 highlighted	 by	 its	
impressive	 96.44%	 accuracy	 in	
detecting	prostate	cancer.	A	state-
of-the-art	 method	 incorporates	
modern	 approaches	 like	 deep	
neural	 networks	 (DNN)	 and	
chaotic	 invasive	 weed	
optimization	 (CIWO).	
Furthermore,	the	CIWO	technique	
suggests	 possible	 computing	
advantages,	 particularly	
optimizing	 feature	 selection.	 The	
model's	 validation	 on	 a	 dataset	
with	 102	 tissue	 examples	 further	
confirms	its	dependability.		

Even	if	the	model	comes	from	a	reliable	
source,	its	dependence	on	a	tiny	dataset	
can	limit	its	broader	applicability.	Deep	
learning's	 intrinsic	 computational	
needs	 might	 make	 it	 difficult	 to	
implement.	There	are	still	unanswered	
questions	 regarding	 the	 model's	
possible	 overfitting	 to	 fresh	 data,	 and	
its	 deep	 learning	 components	 might	
make	it	harder	to	see	how	the	machine	
makes	decisions	 transparently,	making	
it	harder	to	understand	how	it	works.	

[45]		 2023	 14	
cancer	
datasets	

Fuzzy	deep	
leaning	

92.8%	to	
100%,	

The	 FGS-FC	 model	 presents	 a	
novel	 strategy	 by	 combining	 a	
fuzzy	 classifier	 with	 fuzzy	 gene	
selection,	 and	 it	 achieves	 good	
accuracy	 in	 cancer	 classification.	
It	 efficiently	 manages	 complex	
gene	 expression	 data,	 reducing	
overfitting	 and	 exhibiting	
adaptability	 to	 various	 cancer	

The	 study	 offers	 the	 FGS-FC	 cancer	
classification	 model,	 which	 has	
limitations	 but	 shows	 promise.	 It	
restricts	 larger	 applicability	 by	
targeting	 certain	 types	 of	 cancer.	
Despite	 being	 novel,	 its	 ambiguity	 and	
complexity	may	make	it	difficult	to	use	
and	 understand.	 Furthermore,	 the	
model's	 efficacy	 depends	 on	 the	



	 	 ISSN	2549-7286	(online)	

Indonesian	Journal	of	Computer	Science		 	 Vol.	13,	No.	1,	Ed.	2024	|	page	72		 	

types	and	datasets.	The	paper	also	
identifies	 avenues	 for	 future	
research	 to	 improve	 cancer	
classification	 methods,	 including	
combining	 multi-omics	 data	 and	
utilizing	deep	learning.	

availability	 of	 high-quality	 gene	
expression	 data,	 which	 presents	
difficulties	for	regular	application.	

[26]		 2023	 6	cancer	
datasets	

MLP	 average	
96	

The	research	presented	a	method	
that	 creatively	 combined	 three	
feature	 selection	 strategies	 to	
obtain	 an	 excellent	 classification	
accuracy	 of	 approximately	 96%.	
This	 method	 successfully	
addressed	 the	 issues	 caused	 by	
the	 high	 dimensionality	 of	 gene	
expression	 data	 and	 was	 proven	
in	 several	 datasets.	 Furthermore,	
the	 model	 showed	 improved	
performance	 when	 combined	
with	Multilayer	Perceptron.	

The	 model's	 combination	 of	 several	
methodologies	 creates	 difficulties	 for	
execution	 and	 interpretation.	 Its	
effectiveness	depends	on	how	good	and	
complete	 the	 dataset	 is,	 but	 a	 more	
thorough	 comparison	 with	 other	
approaches	 now	 in	 use	 is	 needed.	
Furthermore,	 it	 could	 be	 difficult	 to	
understand	 the	 model's	 predictions	
and	biological	significance	if	the	results	
are	difficult	to	comprehend.	

[46]		 2023	 Brain	
tumor	

CNN	 98.7	 An	 innovative	 approach	 to	 AI-
driven	 diagnostics,	 the	
revolutionary	 integration	 of	 PSCS	
with	 deep	 learning	 has	 greatly	
improved	 the	 classification	
accuracy	 of	 brain	 tumors.	 The	
approach	 has	 been	 thoroughly	
evaluated	 using	 a	 variety	 of	
measures,	 highlighting	 its	
potential	 to	 improve	 patient	
outcomes	 by	 facilitating	 more	
accurate	tumor	classifications.	

Analysis	 increases	 with	 the	
combination	 of	 several	 approaches.	
Furthermore,	 the	 method's	
effectiveness	 is	 inextricably	 linked	 to	
the	 caliber	 and	 volume	 of	 gene	
expression	 data	 that	 are	 readily	
available.	 Caution	 is	 also	 necessary	
because	 of	 ethical	 concerns	 about	
decision	 openness,	 accuracy,	 and	 data	
privacy.	 Detailed	 clinical	 validation	 is	
required	 for	 the	 strategy	 to	
demonstrate	its	practical	value.	

[47]		 2023	 Six	
cancer	
Datasets	

multidimens
ional	fuzzy	
deep	
learning	
(MFDL)	

98	 AI-driven	 diagnostics	 have	 taken	
a	 new	 turn	with	 the	 combination	
of	 PSCS	 and	 deep	 learning,	
improving	 the	 accuracy	 of	 brain	
tumor	 categorization.	 A	 thorough	
assessment	 of	 the	 method's	
success	 has	 been	 made	 possible	
by	 applying	 various	 indicators.	
Ultimately,	 by	 permitting	 more	
accurate	 tumor	classification,	 this	
novel	 technique	 holds	 the	
potential	 for	 bettering	 patient	
outcomes.	

Implementation	 and	 interpretation	
issues	 arise	 when	 numerous	
methodologies	 are	 integrated.	
Furthermore,	 the	 number	 and	 quality	
of	the	gene	expression	data	that	is	now	
accessible	 are	 integrally	 linked	 to	 the	
approach's	 success.	 Accuracy,	 decision	
openness,	 and	 data	 privacy	 are	 other	
ethical	 issues	brought	to	light.	As	such,	
additional	 clinical	 validation	 is	
necessary	 to	 thoroughly	 validate	 the	
procedure	 and	 establish	 its	 efficacy	 in	
the	real	world.	

[48]		 2023	 8	cancer	
datasets	

CSSMO+CNN	 99	 The	 technique	 improves	 the	
accuracy	 of	 cancer	 categorization	
by	 using	 effective	 gene	 selection	
and	 a	 synergistic	 combination	 of	
the	 Cuckoo	 Search	 and	 Spider	
Monkey	 Optimization	 algorithms.	
This	 careful	 gene	 selection	
reduces	 the	 likelihood	 of	
overfitting.	 Furthermore,	 its	
adaptability	 points	 to	 uses	 other	
than	cancer	categorization.	

The	 technique	 highlights	 potential	
difficulties	 and	 the	 significance	 of	
accurate	 parameter	 setups	 when	
working	 with	 high-dimensional	
datasets.	Transparency	is	hampered	by	
its	difficulty	interpreting	nature,	and	its	
effectiveness	 varies	 with	 the	 kinds	 of	
biological	 data.	 Consequently,	 more	
optimization	is	required	to	improve	its	
suitability	 for	 wider	 genomics	
applications.	
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6. Challenges	
	 Volume	 versus	 Cohort	 Size:	 Many	 gene	 expression	 databases	 exist.	
Nevertheless,	 the	 small	 cohort	 sizes	 and	 the	wide	 range	 of	 factors,	 such	 as	 gene	
expression	 levels,	present	a	major	obstacle.	Both	classical	machine	 learning	(ML)	
algorithms	 and	 deep	 learning	 (DL)	 algorithms	 face	 difficulties	 as	 a	 result	 of	 this	
complexity	[49]	Although	curated	public	datasets	are	made	available	by	platforms	
such	 as	 TCGA	 and	 GEO,	 combining	 these	 datasets	 necessitates	 thorough	 pre-
processing	and	harmonization	to	guarantee	data	consistency.	
	 Data	 Availability:	 Primary	 databases	 such	 as	 TCGA	 and	 GEO	 provide	 the	
majority	 of	 publicly	 available	 resources	 for	 cancer	 gene	 expression.	 Known	 for	
their	voracious	appetite	for	large	amounts	of	data,	deep	learning	models	encounter	
difficulties	 creating	 correct	 models	 for	 newly	 available	 cancer	 datasets.	
Researchers	 have	 looked	 into	 dropout	 strategies,	 data	 augmentation,	
regularization	 techniques	 (such	 as	 ridge	 and	 lasso),	 and	 streamlining	 neural	
network	topologies	as	potential	answers.	Still,	a	conclusive	answer	to	this	enduring	
problem	is	elusive.	
	 The	 "curse	 of	 dimensionality"	 presents	 a	 substantial	 obstacle	 to	 the	 use	 of	
artificial	 intelligence	 in	 gene	 expression	 analysis	 [34]this	 phrase	 captures	 the	
challenges	 that	 come	 with	 working	 with	 high-dimensional	 data.	 Random	 effects	
that	 are	 not	 reliably	 reproducible	 across	 similar	 patient	 groups	may	 result	 from	
the	sheer	number	of	dimensions[50].	
	
7. Conclusion	
This	 paper	 carefully	 examines	 the	 various	 ways	 that	 Deep	 Learning	 (DL)	

approaches	 are	 applied	 in	 the	 complex	 and	 varied	 field	 of	 cancer	 research	 on	 a	
wide	range	of	cancer	types	that	cover	an	extensive	range	of	human	anatomy	and	
physiology;	this	in-depth	examination	explores	the	uses	and	effects	of	DL	in	many	
types	 of	 cancers	 such	 as	 lung,	 breast,	 kidney,	 liver,	 prostate,	 gallbladder,	 and	
central	nervous	system	(CNS).	 It	offers	an	 integrative	perspective	by	 illuminating	
the	revolutionary	potential	of	deep	learning	for	improving	our	understanding	and	
diagnosis	of	these	complicated	cancers.	The	scope	of	these	Deep	Learning	studies	
encompasses	 diverse	 objectives	 such	 as	 cancer	 identification,	 subtype	
classification,	 and	 gene	 biomarker	 identification.	 A	 comprehensive	 analysis	
identifies	 the	 prevailing	 tools	 utilized	 for	 gauging	 gene	 expression	 disparities	
between	benign	and	malignant	tissues.	Noteworthy	datasets	commonly	employed	
in	 evaluating	 Deep	 Learning	 (DL)	 models	 using	 gene	 expression	 data	 are	
spotlighted,	shedding	light	on	the	standard	practices	in	this	domain.	It's	critical	to	
acknowledge	 that,	 despite	 significant	 recent	 developments,	 the	 analysis	 of	 gene	
expression	data	in	cancer	research	continues	to	be	a	challenging	and	dynamic	field.	
There	 are	 still	 several	 obstacles	 to	 overcome,	 creating	 additional	 research	 and	
creativity	opportunities.	
Every	obstacle	offers	a	chance	to	learn	more,	improve	methods,	and	uncover	new	
perspectives	that	can	fundamentally	alter	our	molecular	understanding	of	cancer.	
Over	the	past	few	years,	there	has	been	a	noticeable	achievement	in	methodology;	
the	 most	 recent	 developments	 have	 been	 demonstrated	 to	 be	 notably	 more	
accurate	and	effective	than	the	previous	years,	This	impressive	advancement	may	
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be	credited	to	the	careful	design	and	extensive	testing	of	these	new	techniques	on	
a	 wide	 range	 of	 datasets,	 improving	 their	 performance	 and	 showing	 their	
adaptability	 in	 handling	 complex	 issues..	 In	 summary,	 the	 paper	 explores	 deep	
learning	 approaches	 by	 examining	 their	 revolutionary	 potential	 and	
demonstrating	their	uniqueness	in	identifying	all	of	the	constraints	associated	with	
traditional	machine	 learning	 approaches.	 In	 cancer	 research,	 these	 sophisticated	
algorithms	are	employed	to	deduce	insights	from	the	challenging	task	of	analyzing	
gene	 expression	data.	As	 a	 result,	 they	have	proven	 to	 be	 exceptionally	 effective	
and	 proficient	 in	 refining,	 improving,	 and	 elevating	 the	 analysis	 process—an	
almost	 perfect	 capability.	 And	 this	 has	 the	 alluring	potential	 to	 not	 only	 address	
present-day	problems	but	also	to	overcome	them,	resulting	in	a	period	defined	by	
increased	 precision,	 deeper	 insights	 that	 are	 subtle	 throughout,	 and	
groundbreaking	discoveries.	
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