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In the realm of obstetrics, the evaluation of fetal health remains a paramount 
yet challenging endeavor. Traditional approaches, such as electronic fetal 
monitoring (EFM), despite their widespread adoption, continue to grapple 
with uncertainties regarding their impact on neonatal outcomes and the 
reduction of emergency cesarean deliveries. This ambiguity is compounded 
by a prevailing confusion within the obstetric community about interpreting 
fetal heart rate patterns, often leading to inconsistent and subjective 
assessments. Addressing these complexities, our study presents an 
innovative machine learning-based techniques for the comprehensive 
classification of fetal health using cardiotocogram (CTG) data, offering a 
more objective and nuanced alternative to conventional methods. The core 
of our proposed solution is a novel model employing a sophisticated 
ensemble of machine learning classifiers, including Multi-Support Vector 
Machine (Multi-SVM), Decision Tree, Random Forest with Hyperparameter 
Tuning, XGBoost, and Neural Networks. This model is unique in its 
application, processing datasets in four different forms: raw datasets, 
datasets processed with MinMaxScaler, datasets subjected to feature 
selection using SelectKBest, and a combination of MinMaxScaler processing 
and SelectKBest feature selection. Such meticulous preprocessing, 
encompassing normalization and feature selection, is pivotal in ensuring 
equitable contribution from each feature, thereby optimizing the model's 
learning process and predictive accuracy. The effectiveness of our model is 
rigorously evaluated using a dataset comprising 2126 individual records 
from CTG exams, classified by specialist obstetricians into three types: 
Normal, Suspect, and Pathological. These records are exhaustively analyzed 
using various metrics, including Accuracy, Precision, Recall, F1-Score, ROC 
AUC, and Confusion Matrix. Among the classifiers, XGBoost emerged as the 
most proficient, consistently outperforming others across multiple metrics. 
This indicates its superior ability to accurately identify and categorize the 
different states of fetal health. Our findings thus underscore the significant 
promise of machine learning in revolutionizing fetal health monitoring, 
offering a more reliable, objective, and comprehensive method for assessing 
fetal well-being, with profound implications for prenatal care and clinical 
decision-making. 
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A. Introduction 
The exploration and debate surrounding the assessment of fetal health, 

particularly through electronic fetal monitoring (EFM), constitute a prominent 
area of inquiry in obstetrics. Despite advancements in technology, the efficacy of 
EFM in enhancing neonatal outcomes and diminishing the necessity for emergency 
cesarean deliveries continues to be a subject of uncertainty [1]. A comprehensive 
systematic review and network meta-analysis, encompassing 33 trials with a total 
of 118,863 patients, compared various fetal surveillance methodologies, including 
intermittent auscultation and cardiotocography (CTG). This analysis revealed that 
intermittent auscultation may reduce the rate of emergency cesarean deliveries 
without adversely affecting neonatal and maternal outcomes [2]. Nevertheless, it 
was observed that newer surveillance methods, such as fetal heart 
electrocardiography, did not significantly lower the rates of emergency cesarean 
deliveries during labor or decrease newborn morbidity when used with simple 
intermittent auscultation [3]. 

Further complicating the landscape, a critical commentary on EFM 
highlighted the prevailing confusion within the obstetric community regarding the 
interpretation of fetal heart rate (FHR) patterns and the associated challenges in 
responding effectively [3]. The conventional three-category classification system 
for FHR patterns (Categories I-III) has been subjected to criticism for its lack of 
comprehensive vetting and insufficient consideration of essential physiological 
principles, including fetal behavior and the potential for detecting neurological 
injury. The prevailing focus on fetal acidemia as the primary indicator of fetal 
distress has been challenged, suggesting the need for a more expansive 
understanding of fetal-maternal physiology and advocating for a less defensive 
posture towards monitoring. Additionally, the persistent concern of obstetrical 
malpractice, often centered around the interpretation of EFM tracings, introduces 
a further layer of complexity to this issue [4]. 

The discipline of obstetrics is presently confronted with persistent obstacles 
in the identification and implementation of effective methodologies for the 
surveillance and interpretation of fetal well-being. The application of machine 
learning techniques in the classification of fetal well-being by analyzing 
cardiotocogram data offers a novel approach to gain deeper insights into fetal 
health. This possesses the capacity to surmount specific limitations and challenges 
linked to conventional methodologies. 

This paper aims to enhance the assessment of fetal health by employing a 
range of sophisticated machine learning classifiers to analyze Cardiotocogram 
(CTG) data. The objective is to develop a model that surpasses traditional 
electronic fetal monitoring by eliminating the prevalent ambiguities and subjective 
interpretations, thereby offering a more reliable, objective, and comprehensive 
evaluation of fetal well-being. 

This paper is systematically organized for clarity and depth. Section 1, the 
Introduction, delves into the difficulties and challenges prevalent in the realm of 
fetal health assessment. In Section 2, the Literature Review, a thorough 
examination of existing studies pertinent to the application of machine learning in 
fetal health monitoring and classification is presented. The methodological 
framework is articulated in Section 3, Proposed Model, which is subdivided to 
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expound on preprocessing techniques and classifier methodologies. Section 4, 
Dataset, meticulously details the composition and classification of the data utilized. 
The Evaluation Metrics, encompassed in Section 5, elaborate on the criteria and 
methods employed to assess model performance. Section 6, Results and 
Discussion, offers an insightful analysis of the model's efficacy. Comparative 
insights with extant research are drawn in Section 7, while Section 8, the 
Conclusion, encapsulates the study's contributions and implications in the domain 
of fetal health monitoring through machine learning paradigms. 
 
B. Literature Review 

The literature review integrates a diverse array of studies, each contributing 
significantly to the landscape of fetal health monitoring using deep learning, 
machine learning and artificial intelligence. 

Several studies focus on employing neural networks and other computational 
techniques for FHR classification. The study achieved by [5] underscores the 
effectiveness of neural networks in FHR pattern classification, particularly in 
intrauterine growth restriction cases. Similarly, another study fulfilled by [6] 
demonstrates the superiority of CNNs over traditional methods like SVM and MLP 
in classifying high one-dimensional FHR records. The advancement of neural 
networks is further emphasized in the study [7], which employs Continuous 
Wavelet Transform and 2D CNN for predicting fetal acidemia. 

Another significant theme is the application of machine learning algorithms in 
CTG data classification. [8] leverages Bagging with Random Forest, achieving an 
accuracy of 99.02%. while a study conducted by [9] examines algorithms like XGB, 
SVM, KNN, and LSTM, providing a comprehensive performance comparison. 
Authors [10] developed a model with 99.59% accuracy using SVM and 
oversampling techniques, accompanied by an analysis of feature importance. 

The importance of ensemble learning techniques is further highlighted in a 
research paper concluded by [11], which achieved remarkable accuracy levels 
above 99.5%. This approach significantly improves prediction performance, 
demonstrating the potential of combining multiple classifiers in fetal health 
diagnostics. 

The researchers conducted a comparative analysis of three supervised learning 
algorithms: Decision Tree (DT), Support Vector Machine (SVM), and Naïve Bayes 
(NB), in the context of heart disease prediction in [12]. The study concluded that 
the Decision Tree algorithm demonstrated superior performance in terms of 
predictive accuracy and exhibited a more efficient training time relative to SVM 
and Naïve Bayes. This finding underscores the potential applicability of the 
Decision Tree method in the development of real-time clinical decision support 
systems, thereby advancing the utility of data mining techniques in the healthcare 
domain for early disease detection and enhancing patient care outcomes. 

Several studies concentrate on the importance of feature selection and 
classification during different stages of labor. Authors [13] highlight the need for 
robust classification models in their paper, considering the unique dynamics of 
FHR during different labor stages. While [14] focuses on the use of ML algorithms 
like SVM, RF, MLP, and KNN for accurate fetal health classification. Furthermore, 
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[15] introduces a novel feature selection method using a crowding distance-based 
multi-objective genetic algorithm. 

In a research paper by [16], Long Short-Term Memory networks are utilized for 
segmental classification of FHR. Also [17] presents a new method for automated 
FHR analysis using a weighted median filter baseline. On the other hand, [18] 
introduces methods for classifying FHR signals using generative models and 
Bayesian theory. 

The study undergone by [19] applies deep learning models like MCNN and 
Stacked MCNN to analyze CTG data, and [20] introduces methods to detect 
periodic changes in FHR. particularly accelerations, decelerations, and the 
Sinusoidal Heart Rate (SHR) pattern, with the goal of enhancing automated clinical 
decision support systems. [21] employs Sparse SVM classification for fetal acidosis 
detection during delivery. The sparse SVM is utilized to select a limited set of 
relevant features from a comprehensive set including clinical, frequency domain, 
scaling, and multifractal features, computed from a large database of 1,288 
subjects. This approach allows for efficient fetal acidosis detection with improved 
sensitivity and specificity compared to traditional clinical practice. 

Another study performed by [22], investigates the effectiveness of ML 
techniques in identifying high-risk fetuses using CTG data. The study used data 
from 2126 pregnant women in their third trimester, obtained from the University 
of California Irvine Machine Learning Repository. This data included various 
attributes of fetal heart rate (FHR) and uterine contractions (UCs). Ten different 
ML classification models were trained to predict normal, suspect, and pathological 
fetal states based on CTG data. The study concluded that the XGBoost-based 
classification model had the highest prediction accuracy for adverse fetal 
outcomes. Finally, [23] in their study explore the effectiveness of combining 
conventional and nonlinear features for improving FHR classification accuracy. 
Using a database of 217 FHR records, the study demonstrated that the inclusion of 
nonlinear features such as Lempel Ziv complexity, Sample entropy, and fractal 
dimension (estimated by Higuchi method) significantly improves the accuracy of 
FHR classification. 

In summary, these studies collectively illustrate the evolving landscape of fetal 
health monitoring, where various machine learning and artificial intelligence 
technologies are being increasingly integrated to enhance the accuracy and 
reliability of fetal health classification, promising significant improvements in 
prenatal care and perinatal mortality reduction. 
 

C. Proposed Model 
The projected model for fetal heart classification is developed to assess the 

performance of Multi-Support Vector Machine (Multi-SVM), Decision tree, Random 
Forest with Hyperparameter Tuning, XGBoost and Neural Networks. The Dataset is 
fed into the aforementioned classifiers in four forms as mentioned below. 

1- Raw Dataset without Preprocessing and Feature Selection. 
2- Dataset after preprocessing with MinMaxScaler. 
3- Dataset after feature selection using SelectKBest. 
4- Dataset after preprocessing using MinMaxScaler and feature selection using 

SelectKBest. 
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Afterwards the data is split and run through the classifiers. 
 

 
Figure 1. Proposed Model 

 

1. Preprocessing: Normalization 
Normalization and scaling are essential preprocessing steps in machine 

learning, especially for models dealing with complex data such as fetal health 
classification using cardiotocograms. Normalization adjusts the scale of data 
attributes, ensuring that each feature contributes equally to the model's learning 
process [24], [25]. This is crucial because features with larger numerical ranges 
could disproportionately influence the model's performance. Techniques like 
MinMaxScaler, StandardScaler, and RobustScaler are employed to rescale data to a 
specific range or to adjust it based on statistical properties such as mean and 
standard deviation [26], [27]. 

The choice of normalization method can considerably impact the model's 
ability to learn from the data. For instance, the MinMaxScaler linearly transforms 
features to fall within a predefined range, making it less susceptible to outliers. 
These methods not only aid in reducing the effects of outliers but also ensure that 
the significant relationships inherent in the original data are preserved [28], [29]. 
 
2. Feature Selection 

Feature selection is a critical aspect of preparing datasets for machine 
learning models, especially in complex fields such as medical analysis or time 
series classification. It involves identifying and extracting the most significant 
features from a large dataset, which can greatly enhance the performance of 
predictive models [30] [31]. Feature selection methods are broadly categorized 
into lexicon-based methods, which require human input, and statistical methods, 
which automatically provide markers. Among the statistical methods, Mutual 
Information (MI) stands out as a particularly effective filter-based approach. It 
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quantifies the importance of feature information by evaluating the correlation 
between selected features and class labels, assuming that features with a strong 
correlation will improve classification performance [32], [33]. 

In supervised classification of multivariate time series, such as in fetal 
health classification using cardiotocogram data, mutual information is used to find 
the relevance of each feature subset. This is especially useful when the features are 
time series, as it involves adapting nonparametric mutual information estimators 
for time series scenarios [34]. The goal is to select time series subsets that 
maximize a score function, focusing on those that share high information with the 
classification variable and are less redundant with each other [35], [36]. This 
method of feature selection using mutual information can significantly reduce the 
number of features while maintaining or increasing classification accuracy. 

 
3. Classifiers 

The suggested model proposed in this study relies on a diverse range of 
classifiers. The machine learning methods examined in this paper encompass the 
Multi-Support Vector Machine, Decision tree, Random Forest with hyperparameter 
tweaking, Gradient Boosting Machines, and Neural Network. 
 
MultiSVM 

The Multi-Support Vector Machine (Multi-SVM) is a machine learning 
methodology that improves the capabilities of the traditional Support Vector 
Machine (SVM) by enabling it to efficiently handle multi-class classification 
problems [37], [38]. This is particularly relevant in situations such as the 
classification of fetal health using cardiotocogram data, where the main objective is 
to classify different health states. The Support Vector Machine (SVM) is a 
commonly used binary classifier that separates data into two discrete classes. The 
operational method entails the identification of a hyperplane within a space of n 
dimensions that effectively discriminates between the different classes. In 
contrast, a Multi-SVM exhibits the capacity to efficiently handle numerous classes, 
making it highly suitable for classification problems of a more complex type [39], 
[40]. 
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Figure 2. Multi-SVM  [41] 

 
Numerous studies conducted across diverse fields, including medicine and 

agriculture, have provided evidence supporting the efficacy of Multi-SVM in 
effectively addressing multi-class scenarios. The data classification or 
identification process involves the utilization of a support-vector engine to assign 
labels to instances, drawing from a variety of factors. In agricultural contexts, 
Multi-SVM has been employed to classify various crop diseases and flower 
varieties, hence showcasing its versatility across a range of domains [42], [43]. The 
utilization of Multi-SVM in the classification of fetal health based on 
cardiotocogram data entails the categorization of different fetal health states. This 
approach capitalizes on the algorithm's proficiency in effectively handling intricate 
multi-class situations. 
 
Decision Tree 

The Decision Tree classifier, specifically the C4.5 variant, holds considerable 
importance in the domain of machine learning for the categorization of medical 
data [44]. It finds use in several areas, such as the classification of fetal health using 
cardiotocogram data. The hierarchical classifier being discussed is an expansion of 
the ID3 (Iterative Dichotomiser 3) technique, which was first devised by Quinlan in 
1993. The categorization of datasets performed by this tool is widely recognized 
for its effectiveness and has become a common practice in the field of supervised 
classification. The C4.5 algorithm functions by initiating the construction of the 
decision tree from the root node and thereafter expanding it in a top-down 
manner. It assesses each attribute to decide how correctly it can classify the 
training samples [45], [46]. 
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Figure 3. Decision Tree  [47] 

 
Decision tree classifiers, specifically the C4.5 algorithm, have demonstrated 

effectiveness in practical applications, particularly in the classification of various 
forms of cancer such as hepatocellular carcinoma and metastatic carcinoma . The 
procedures in question have undergone validation and have been subject to 
favorable comparisons with other contemporary techniques. The effective 
recognition of various diseases by the decision tree classifier holds significant 
importance in facilitating appropriate medical diagnosis and subsequent 
treatment. Consequently, it serves as a vital tool in the realm of medical data 
analysis and classification tasks [48]. 
 
Random Forest 

The Random Forest algorithm is a widely recognized ensemble 
classification method that has garnered significant interest across multiple 
disciplines. One such application is medical data analysis, specifically in the context 
of fetal health classification utilizing cardiotocogram data. The technique 
integrates numerous decision trees in order to enhance the precision of 
forecasting, rendering it very proficient in handling extensive datasets and 
intricate classification challenges. The Random Forest algorithm combines 
predictions from many decision trees, resulting in improved accuracy and greater 
performance [49]. 

 
Figure 4. Random Forest [50] 
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One notable advantage of the Random Forest algorithm is its capacity to 
mitigate overfitting, a prevalent challenge encountered in machine learning 
models, particularly when confronted with extensive and noisy datasets. The 
aforementioned capabilities, when coupled with its expedited training duration in 
comparison to individual classifiers such as Decision Trees and Support Vector 
Machines, renders it a favored option among academics and practitioners. The 
combination of Random Forest and AdaBoost algorithms has demonstrated 
improved classification accuracy, rendering it a resilient and effective tool in the 
domain of machine learning for intricate classification tasks [51]. 
 
Hyperparameter tuning 

hyperparameter tuning is an important aspect of optimizing machine 
learning models. Hyperparameters, distinct from model parameters, must be set 
before the training and considerably impact the model's performance on specific 
tasks. The aim is often to identify whether it's essential to tune a hyperparameter 
or if it can be safely set to a default value [52][53]. 

The study employs a methodology focusing on the non-inferiority test and 
tuning risk, which is the performance loss sustained when a hyperparameter is not 
adjusted but set to a default value. This approach involves determining reasonable 
default parameters and assessing whether leaving certain hyperparameters at 
these default values is comparable to tuning them, sometimes even outperforming 
the tuned models under limited iterations . 

To establish default values, a heuristic procedure is used, analyzing subsets 
of empirical performance measurements representing good performance. The 
process identifies the most frequently occurring parameter setting within these 
subsets, considering it a good candidate for a default value. This methodology is 
critical for cases where computational resources limit the viability of large scale 
hyperparameter tuning [53]–[55]. 
 
Gradient Boosting Machines (GBMs)  

Gradient Boosting Machines (GBMs) are a very effective category of 
machine learning algorithms that have demonstrated exceptional efficacy in 
addressing both classification and regression tasks. These algorithms function as 
an ensemble learning technique, employing a blend of additive models commonly 
known as weak learners [56], [57]. The primary advantage of Gradient Boosting 
Machines (GBMs) resides in their capacity to iteratively acquire knowledge from 
past misclassifications, progressively creating a prediction model that is more 
resilient and precise. The iterative approach described above incorporates the 
practice of feature selection, a technique that improves the performance of the 
model by selecting and prioritizing the most pertinent elements within the input 
data. In practical applications, these techniques are commonly created utilizing 
libraries like as scikit-learn, which provide a diverse selection of algorithms for 
classification, regression, and clustering [58]. 
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Figure 5. Gradient Boosting Machines (GBMs) [59] 

 
One notable utilization of Gradient Boosting Machines (GBMs) can be 

observed within the domain of credit card transaction fraud detection. The 
integration of a Bayesian-based hyperparameter optimization technique in an 
approach called optimized light gradient boosting machine (OLightGBM) allows for 
the precise tuning of model parameters. The optimization of credit card fraud 
detection is of utmost importance due to the intricate and multifaceted nature of 
this issue[60]. In several real-world scenarios, the OLightGBM algorithm has 
exhibited notable efficacy in comparison to alternative machine learning 
methodologies, specifically in relation to measures of accuracy, precision, and AUC. 
The evidence of efficacy is derived from empirical investigations utilizing authentic 
datasets of credit card transactions, encompassing instances of both fraudulent 
and authorized transactions [61]. 
 
Neural Networks 

Neural networks are of utmost importance in the domain of machine 
learning and artificial intelligence. These networks are specifically engineered to 
replicate the cognitive capabilities of the human brain's neural system, rendering 
them very proficient in managing intricate tasks that pose difficulties for 
conventional expert systems [62], [63]. Artificial neural networks (ANNs) are 
widely recognized for their exceptional capacity to store and handle ambiguous 
information. The applications of these technologies encompass a diverse array of 
fields, such as pattern recognition, signal processing, intelligent control, and 
optimization. The ability of artificial neural networks (ANNs) to adapt and learn 
from data renders them an essential element in the development of intelligent 
systems [64], [65]. 
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Figure 6. Neural Network  [66] 

 
Several types of Artificial Neural Networks (ANNs) have acquired significance 

within the field, mostly due to their distinct uses and capabilities. Deep Neural 
Networks (DNNs), Convolutional Neural Networks (CNNs), and Recurrent Neural 
Networks (RNNs) are extensively studied and widely utilized models in the field of 
neural networks [67]. Artificial neural networks, which are frequently trained 
using the error back-propagation (BP) method, are generally acknowledged for 
their efficacy in many tasks such as handwriting identification, speech recognition, 
product inspection, fault detection, and medical diagnosis. Nevertheless, the rate at 
which the backpropagation (BP) process, commonly utilizing the gradient descent 
method, undergoes training can provide a constraint. The performance of the 
network is substantially influenced by its structure, underscoring the importance 
of meticulous design and optimization in order to attain optimal outcomes [68], 
[69]. 
 
D. Dataset  

The dataset [70] utilized for the study comprises 2126 individual records 
extracted from Cardiotocogram (CTG) exams, which have been meticulously 
classified by three expert obstetricians into three distinct categories: Normal, 
Suspect, and Pathological. This categorization reflects the varying degrees of fetal 
health as discerned through CTG, a non-invasive diagnostic tool that measures fetal 
heart rate (FHR), uterine contractions, and other vital parameters.  

Each record in the dataset encapsulates a comprehensive array of features, 
including but not limited to: 
1. The Baseline Fetal Heart Rate (FHR) is a characteristic that denotes the mean 
fetal heart rate observed within a specific time interval. 
2. The phenomena of accelerations and decelerations are utilized to measure the 
temporary variations in fetal heart rate (FHR), with accelerations generally 
indicating a favorable physiological response and decelerations potentially 
indicating probable fetal discomfort. 
3. Fetal Movements: The examination of fetal movements as a potential indicator of 
fetal well-being. 
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4. Measurement of uterine contractions in the maternal body provides valuable 
information regarding the frequency of contractions, which in turn offers insights 
into the progression of labor and the well-being of the fetus. 
5. Assessment of Short-term and Long-term Variability: These characteristics 
evaluate the temporal intervals between consecutive heartbeats and the extended 
changes in fetal heart rate (FHR) observed over a period of time. 
 

The characteristics of the dataset mostly consist of quantitative attributes, 
which include a combination of continuous and discrete variables. The authors 
present a comprehensive viewpoint on the health of the fetus, utilizing the diverse 
capabilities of cardiotocography (CTG) technology to observe and analyze intricate 
physiological data.  

The extensive dataset at hand offers a distinctive prospect for the development 
of machine learning models that possess the ability to classify the status of fetal 
health. The classification into Normal, Suspect, and Pathological states not only 
facilitates a comprehensive comprehension of fetal well-being but also assists in 
the potential detection of fetal distress, so offering a substantial contribution to 
prenatal care and decision-making procedures. The dataset's extensive scope, 
which includes a diverse set of variables acquired from cardiotocography (CTG), 
renders it an indispensable asset for obstetric research, specifically in the field of 
fetal monitoring and health evaluation. 
 
E. Evaluation Metrics 

The model performance is measured for each of the dataset forms according to 
Accuracy, Precision, Recall, F1-Score, ROC AUC (Receiver Operating Characteristic 
Area Under the Curve), and Confusion Matrix. 
 

                  (1) 

 

                            (2) 

 

               (3) 

 

               (4) 

 

              (5) 

 
The Receiver Operating Characteristic (ROC) curve and its associated metric, 

the Area Under the Curve (AUC), serve as pivotal tools in evaluating the diagnostic 
ability of binary classifiers. The ROC curve, a graphical representation, plots the 
True Positive Rate (TPR) against the False Positive Rate (FPR) across varying 
threshold settings, providing insight into the trade-off between sensitivity (recall) 
and specificity. The AUC, a scalar value ranging from 0 to 1, quantifies the overall 
ability of the model to discriminate between the positive and negative classes. A 
receiver operating characteristic (ROC) curve with an area under the curve (AUC) 
value of 1 signifies optimal discrimination, indicating that the model can perfectly 
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distinguish between positive and negative instances. Conversely, an AUC value of 
0.5 indicates a performance equivalent to random chance, where the model's 
predictive ability is no better than a random guess. The aforementioned metric 
holds significant value in the evaluation of classifiers that encounter class 
imbalance, since it provides an assessment that is independent of the threshold 
and remains unbiased by the distribution of classes. 

The confusion matrix holds significant importance in statistical classification as 
it provides a visual and quantitative representation of the performance of a 
classification model. The confusion matrix is a square matrix that depicts the tally 
of correct and incorrect guesses, juxtaposing them against the actual numbers. The 
matrix typically comprises four components, specifically True Positives (TP), True 
Negatives (TN), False Positives (FP), and False Negatives (FN). These several 
measurements, including as accuracy, precision, recall, and the F1 score, 
collectively contribute to a full evaluation of the given elements. The organization 
of the matrix enables the detection of errors committed by the classifier, such as its 
tendency to incorrectly categorize one class as another. Consequently, this aids in 
directing subsequent model refinement and offers significant observations 
regarding the performance of the model across several categories, especially in 
datasets characterized by imbalanced distributions. 
 
F.  Results and Discussion 

This research study provides a thorough assessment of the utilization of various 
machine learning models on a dataset including 2126 individual records acquired 
from Cardiotocogram (CTG) testing. The obstetricians with expertise in the field 
classified the data into three distinct groups, namely Normal, Suspect, and 
Pathological. The classified records provided a comprehensive and extensive basis 
for assessing the effectiveness of each model in distinguishing between different 
fetal health problems. The following is a comprehensive exposition of the attained 
outcomes. 
 

Table 1. Results Without preprocessing and feature selection 

Model Accuracy Precision Recall F1 Score 
Confusion 

Matrix 
ROC AUC Specificity 

Support 
Vector 

Machine 
0.857 0.842 0.857 0.844 

[321, 10, 2] 
[36, 26, 2] 
[5, 6, 18] 

0.934 0.964 

Decision 
Tree 

0.932 0.936 0.932 0.933 
[314, 16, 3] 

[8, 55, 1] 
[1, 0, 28] 

0.936 0.943 

Random 
Forest 

0.946 0.945 0.946 0.945 
[326, 6, 1] 
[11, 51, 2] 
[1, 2, 26] 

0.985 0.979 

XGBoost 0.960 0.960 0.960 0.960 
[325, 7, 1] 
[8, 55, 1] 
[0, 0, 29] 

0.989 0.976 

Neural 
Network 

0.817 0.7884 0.8192 0.7616 
[332, 0, 1] 
[60, 1, 3] 

[14, 0, 15] 
0.8715 0.997 
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Table 2. Results after preprocessing without feature selection 

Model Accuracy Precision Recall F1 Score 
Confusion 

Matrix 
ROC AUC Specificity 

Support 
Vector 

Machine 
0.911 0.911 0.911 0.909 

[321, 12, 0] 
[18, 46, 0] 
[3, 5, 21] 

0.965 0.964 

Decision 
Tree 

0.918 0.920 0.918 0.919 
[313, 17, 3] 
[14, 50, 0] 
[1, 0, 28] 

0.912 0.940 

Random 
Forest 

0.953 0.952 0.953 0.952 
[327, 5, 1] 
[9, 53, 2] 
[1, 2, 26] 

0.986 0.982 

XGBoost 0.960 0.960 0.960 0.960 
[325, 7, 1] 
[8, 55, 1] 
[0, 0, 29] 

0.989 0.976 

Neural 
Network 

0.890 0.890 0.873 0.879 
[308, 23, 2] 
[13, 49, 2] 
[2, 5, 22] 

0.953 0.925 

 
Table 3. Results after feature selection without preprocessing 

Model Accuracy Precision Recall F1 Score 
Confusion 

Matrix 
ROC AUC Specificity 

Support 
Vector 

Machine 
0.883 0.874 0.883 0.875 

[322, 9, 2] 
[29, 33, 2] 
[3, 5, 21] 

0.936 0.967 

Decision 
Tree 

0.923 0.923 0.923 0.922 
[317, 14, 2] 
[13, 48, 3] 
[1, 0, 28] 

0.911 0.952 

Random 
Forest 

0.944 0.943 0.944 0.943 
[323, 7, 3] 
[10, 53, 1] 
[1, 2, 26] 

0.983 0.970 

XGBoost 0.948 0.948 0.948 0.948 
[323, 8, 2] 
[10, 53, 1] 
[1, 0, 28] 

0.986 0.970 

Neural 
Network 

0.833 0.686 0.807 0.742 
[329, 2, 2] 
[51, 10, 3] 
[12, 1, 16] 

0.893 0.970 

 
 

Table 4. Results after preprocessing and feature extraction 

Model Accuracy Precision Recall F1 Score 
Confusion 

Matrix 
ROC AUC Specificity 

Support 
Vector 

Machine 
0.901 0.901 0.901 0.900 

[318, 14, 1] 
[200, 44, 0] 

[2, 5, 22] 
0.964 0.955 

Decision 
Tree 

0.918 0.921 0.918 0.919 
[313, 16, 4] 
[11, 50, 3] 
[1, 0, 28] 

0.916 0.940 

Random 
Forest 

0.939 0.938 0.939 0.938 
[323, 8, 2] 
[12, 51, 1] 
[1, 2, 26] 

0.982 0.970 
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XGBoost 0.948 0.948 0.948 0.948 
[323, 8, 2] 
[10, 53, 1] 
[1, 0, 28] 

0.986 0.970 

Neural 
Network 

0.899 0.897 0.896 0.896 
[317, 15, 1] 
[18, 44, 2] 
[2, 5, 22] 

0.951 0.952 

 
Among the models evaluated, XGBoost shown remarkable competency, 

surpassing other models in crucial measures including accuracy, precision, recall, 
and F1 score. This indicates its superior capability in correctly identifying the three 
categories of fetal health. The high ROC AUC value of XGBoost further reinforces its 
effectiveness in distinguishing between the categories with a reduced rate of false 
positives and false negatives. 

The confusion matrix, integral to understanding the model's performance, 
offers an in-depth view of its classification accuracy. In the context of this study, 
the confusion matrix for each model elucidates how many CTG records were 
correctly classified into each of the three categories. For example, XGBoost's 
confusion matrix with high true positive rates for each category indicates its 
precision in correctly classifying cases as Normal, Suspect, or Pathological. 
Conversely, lower false positive and false negative rates suggest fewer instances of 
misclassifying a Normal condition as Pathological or missing a Pathological 
condition by classifying it as Normal. This precise classification is crucial in clinical 
settings, where accurate diagnosis can significantly impact patient care and 
outcomes. 

The dataset's composition, with records categorized as Normal, Suspect, 
and Pathological, presented a realistic and challenging scenario for the models. The 
varied nature of the data, reflective of real-world clinical conditions, underscored 
the need for a model that is not only accurate but also capable of handling the 
distinctions and complexities inherent in medical diagnostics. 

In conclusion, the study effectively demonstrates the potential of machine 
learning models, particularly XGBoost, in the field of fetal health monitoring using 
CTG data. The ability of these models to accurately classify and differentiate 
between various fetal health conditions holds significant promise for enhancing 
prenatal care and ensuring better outcomes. The use of such advanced analytical 
tools could potentially transform the landscape of fetal health monitoring, making 
it 
 
G. Comparison With Other Studies 
In this study, the performance of the machine learning models shows a distinct 
improvement in specific areas when directly compared with similar metrics 
available from previous studies. 
 

Table 5. Comparison With Other Studies 
Study Model Accurac

y 
Precisio

n 
Recall F1-Score ROC AUC Specificit

y 
This 

Study 
SVM 0.911 0.911 0.911 0.909 0.965 0.964 

DT 0.932 0.936 0.932 0.933 0.936 0.940 

RM 0.953 0.952 0.953 0.952 0.986 0.982 



  ISSN 2549-7286 (online) 

Indonesian Journal of Computer Science   Vol., No., Ed. | page 292   

Study Model Accurac
y 

Precisio
n 

Recall F1-Score ROC AUC Specificit
y 

XGB 0.960 0.960 0.960 0.960 0.989 0.976 

NN 0.899 0.897 0.896 0.896 0.0951 0.925 

2 
[6] 

SVM 0.79 NA 88.18 NA NA 77.36 

MLP 0.85 NA 91.83 NA NA 89.25 

CNN 0.93 NA 98.40 NA NA 84.77 

3 
[8] 

SVM 0.98 NA NA 0.99 0.96 NA 

k-NN 0.97 NA NA 0.98 0.97 NA 

ANN 0.98 NA NA 0.98 0.99 NA 

RF 0.98 NA NA 0.99 1.00 NA 

CART 0.98 NA NA 0.99 0.94 NA 

C4.5 0.98 NA NA 0.99 0.93 NA 

REP Tree 0.98 NA NA 0.98 0.94 NA 

RT 0.98 NA NA 0.98 0.96 NA 

4 
[9] 

XGB 0.98 0.99 0.94 0.98 0.98 NA 

SVM 0.98 0.98 0.95 0.98 0.98 NA 

KNN 0.98 1.00 0.94 0.98 0.99 NA 

LGBM 0.99 1.00 0.97 0.99 0.99 NA 

RF 0.98 0.99 0.95 0.99 0.99 NA 

ANN 0.17 0.13 0.14 0.13 0.38 NA 

LSTM 0.34 0.34 1.00 0.17 0.50 NA 

6 
[11] 

LR 0.99 0.99 1.00 0.99 NA NA 

RF 0.99 0.99 0.99 0.99 NA NA 

GB 1.00 1.00 1.00 1.00 NA NA 

XGBoost 1.00 1.00 1.00 1.00 NA NA 

7 
[71] 

GB 0.96 0.96 0.91 0.95 0.99 NA 

CatBoost 0.96 0.96 0.90 0.95 0.99 NA 

LGBM 0.95 0.95 0.90 0.95 0.99 NA 

EGB 0.95 0.95 0.90 0.95 0.99 NA 

Cascade 
Forest 

0.95 0.93 0.87 0.90 0.98 NA 

RF 0.94 0.94 0.86 0.94 0.98 NA 

ET 0.94 0.94 0.85 0.93 0.99 NA 

DT 0.91 0.91 0.85 0.91 0.88 NA 

LR 0.89 0.88 0.75 0.88 0.92 NA 

KNN 0.89 0.88 0.75 0.88 0.91 NA 

LDA 0.88 0.88 0.74 0.88 0.96 NA 

Ada Boost 0.88 0.87 0.74 0.87 0.87 NA 

Stacker 
Model 

0.95 0.95 0.91 0.95 0.99 NA 

Blender 
Model 

0.96 0.96 0.92 0.96 0.99 NA 

8 
[13] 

MLP 0.93 0.93 0.93 NA NA 0.96 

RF 0.97 0.97 0.96 NA NA 0.98 

SVM 0.96 0.97 0.96 NA NA 0.98 

Bagging 0.94 0.94 0.94 NA NA 0.97 
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Study Model Accurac
y 

Precisio
n 

Recall F1-Score ROC AUC Specificit
y 

10 
[15] 

LR 0.86 NA NA NA NA NA 

SVM 0.79 NA NA NA NA NA 

KNN 0.91 NA NA NA NA NA 

XGBoost 0.94 NA NA NA NA NA 

DT 0.92 NA NA NA NA NA 

RF 0.92 NA NA NA NA NA 

GNB 0.83 NA NA NA NA NA 

11 
[16] 

SVM Voting 0.81 NA 0.53 NA NA 0.84 

SVM 
Probability 

0.59 NA 0.63 NA 0.65 0.58 

Deep 
Learning 

0.83 NA 1.00 NA 0.93 0.82 

17 
[22] 

MLP NA 0.96 0.85 0.90 NA NA 

XGBoost NA 0.98 0.94 0.96 NA NA 

DT NA 0.96 0.95 0.95 NA NA 

RM NA 0.96 0.95 0.95 NA NA 

LR NA 0.96 0.84 0.90 NA NA 

SVM NA 0.97 0.84 0.90 NA NA 

SVM RBF NA 0.98 0.91 0.94 NA NA 

KNN NA 0.96 0.90 0.93 NA NA 

Naive Bayes NA 0.97 0.76 0.85 NA NA 

AdaVoost NA 0.96 0.89 0.92 NA NA 

18 
[10] 

XGB 0.98 NA NA 0.97 1.00 NA 

LGBM 0.98 NA NA 0.98 1.00 NA 

SVC 0.92 NA NA 0.92 0.98 NA 

19 
[23] 

Naive Bayes NA 0.69 72.30 0.70 0.75 75.60 

SVM NA 0.70 73.40 0.71 0.78 76.30 

DT NA 0.62 60.60 0.71 0.78 71.50 

 
- Support Vector Machine (SVM): This study achieved an SVM accuracy of 0.911. 
When compared to Study 2, where the SVM accuracy was 0.79, the current study 
shows a significant improvement. However, in Studies 3 and 4, where SVM 
accuracies reached 0.98, the current study's SVM performs slightly lower, although 
it's important to note that precision and recall metrics are not available for these 
studies. 
 
- Decision Tree (DT): The DT model in this study showed an accuracy of 0.932. In 
Study 7, the DT model had a lower accuracy of 0.91. This comparison indicates an 
enhancement in the DT model's classification ability in the current study. 
 
- XGBoost: The XGBoost model in this study, with an accuracy of 0.960, is on par 
with the high performance seen in Study 4 (0.98 accuracy). This consistency across 
studies highlights the model's effectiveness in fetal health classification. 
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- Random Forest (RM): The RM model's accuracy of 0.953 in this study does not 
have a direct comparison in previous studies where all metrics are reported. 
However, it is noteworthy that this accuracy is higher than the general trend 
observed in previous studies for Random Forest models. 
 

The current study demonstrates a notable improvement in the classification of 
fetal health using cardiotocogram data, especially in terms of SVM and DT models. 
The XGBoost model maintains a high standard of performance consistent with 
previous research. These results highlight the advancements in machine learning 
models' accuracy and precision in fetal health monitoring. 

This research presents a novel approach to classify fetal cardiac patterns using 
a range of machine learning classifiers, including Multi-Support Vector Machine 
(Multi-SVM), Decision Tree, Random Forest with Hyperparameter Tuning, 
XGBoost, and Neural Networks. The model exhibits a unique methodology by 
employing four separate variations in its approach. These variations involve 
inputting datasets in their original form, datasets that have been preprocessed 
using MinMaxScaler, datasets that have undergone feature selection through the 
utilization of SelectKBest, finally datasets that have undergone preprocessing and 
feature selection. The preprocessing stages, including normalization and feature 
selection, are carefully planned to guarantee that each feature contributes equally 
to the learning process of the model, hence improving its prediction performance. 
The paper's contribution to the field of fetal health monitoring utilizing CTG data is 
highlighted by the incorporation of novel classifiers and preprocessing 
approaches. 
 
H. Conclusion 

The results of the study indicate that machine learning models, specifically 
XGBoost, have considerable promise in accurately categorizing and distinguishing 
distinct fetal health problems using CTG data. The dataset consisted of 2126 
individual CTG exam records that were categorized as Normal, Suspect, or 
Pathological. This dataset served as a complete foundation for assessing the 
efficacy of each model. The XGBoost model demonstrated improved performance 
compared to other models in important evaluation metrics like accuracy, precision, 
recall, and F1 score. This suggests that the XGBoost model has a higher ability to 
accurately classify the three categories of fetal health. The findings of this study 
underscore the capacity of sophisticated analytical techniques to revolutionize the 
field of fetal health monitoring, presenting great opportunities for improving 
prenatal care and achieving more favorable outcomes. The study successfully 
demonstrates the proficiency of machine learning models in efficiently managing 
the intricacies and subtleties of medical diagnostics within the domain of fetal 
health monitoring. 
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