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The continuous evolution of imaging technologies has accentuated the 
demand for robust and efficient image denoising techniques. Unsupervised 
machine learning algorithms have emerged as promising tools for 
addressing this challenge. This review scrutinizes the efficacy, versatility, 
and limitations of various unsupervised machine learning approaches in the 
area of image denoising. The paper commences with a clarification of the 
foundational concepts of image denoising and the pivotal role unsupervised 
machine learning plays in enhancing its efficacy. Traditional denoising 
methods, encompassing filters and transforms, are briefly outlined, 
highlighting their insufficiencies in handling complicated noise patterns 
prevalent in modern imaging systems. Subsequently, the review delves into 
an exploration of unsupervised machine learning techniques tailored for 
image denoising. This includes an in-depth analysis of methodologies such as 
clustering deep learning. Each technique is surveyed for its architectural 
variation, adaptability, and performance in denoising diverse image datasets. 
Additionally, the review encompasses an evaluation of prevalent metrics 
used for quantifying denoising performance, discussing their relevance and 
applicability across varying noise types and image characteristics. 
Furthermore, it delineates the challenges faced by unsupervised techniques 
in this domain and charts prospective avenues for future research, 
emphasizing the fusion of unsupervised methods with other learning 
paradigms for heightened denoising efficacy. This review merges empirical 
insights, critical analysis, and future perspectives, serving as a roadmap for 
researchers and practitioners navigating the landscape of image denoising 
through unsupervised machine learning methodologies. 
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A. Introduction 
The growing advancements in imaging technologies across diverse domains, 

spanning medical diagnostics, surveillance, satellite imaging, and computer vision 
applications, have propelled the need for robust and efficient image denoising 
techniques [1]. The clarity and fidelity of acquired images play a pivotal role in 
subsequent analysis, interpretation, and decision-making processes [2]. However, 
these images are invariably corrupted by various sources of noise, including sensor 
imperfections, environmental interferences, or transmission artifacts, which 
significantly impair their quality and utility [3]. 

Amidst this context, the field of image denoising has garnered substantial 
attention, aiming to restore images by effectively suppressing noise while retaining 
crucial details and structures [4]. Traditional approaches, including spatial filters 
[5], wavelet transforms [6], and statistical modeling [7], have long served as the 
cornerstone for mitigating noise in images. These methods, albeit effective in 
certain scenarios, often falter when confronted with complex noise patterns or 
when tasked with preserving intricate image features during denoising processes 
[8]. See fig. 1 for image denoising example. 

The advent of unsupervised machine learning algorithms has promise a 
paradigm shift in the domain of image denoising [10]. Unlike their supervised 
counterparts that necessitate labeled datasets for training, unsupervised 
techniques leverage inherent data structures and patterns to glean insights and 
perform denoising tasks without explicit guidance [11]. This approach holds 
immense promise in addressing the inherent challenges posed by diverse noise 
distributions, variability in image content, and the absence of labeled training data 
in many practical scenarios[12]. 

 

 
Figure 1. An example of denoising an image [9] 

 
The aim of this review is to meticulously dissect and evaluate the efficacy, 

versatility, and limitations of unsupervised machine learning approaches in the 
domain of image denoising. The review will embark on an exploration that spans 
foundational concepts, classical denoising methodologies, and a deep dive into the 
spectrum of unsupervised algorithms adapted for image denoising. 

The ensuing sections will commence with a succinct overview of traditional 
image denoising techniques, explaining their underlying principles, strengths, and 
inherent limitations. While these methods have laid the groundwork for image 
restoration, their efficacy diminishes when challenged with diverse noise 
distributions or in scenarios where intricate details must be preserved. 

Subsequently, the review will pivot towards unsupervised machine learning 
algorithms, unraveling their nuances and applications in the context of image 
denoising. This includes an in-depth analysis of methodologies such as clustering 
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[13] and deep learning [14][15]. Each algorithmic approach will be dissected to 
comprehend its architectural complexity, adaptability across different image 
domains, and efficacy in suppressing various noise types commonly encountered 
in practical imaging scenarios [16]. 

Furthermore, the review will thought out in advance on the critical role of 
evaluation metrics in quantifying denoising performance, encompassing a 
discussion on widely adopted metrics such as Peak Signal-to-Noise Ratio (PSNR) 
[17], Structural Similarity Index (SSI) [18] , and Mean Squared Error (MSE) [19]. 
This evaluation will shed light on the suitability and limitations of these metrics in 
capturing the perceptual quality and fidelity of denoised images across diverse 
noise profiles and image characteristics. 

Additionally, the review will navigate through the challenges confronted by 
unsupervised techniques in image denoising, ranging from the interpretability of 
learned representations to the scalability and adaptability of algorithms across 
heterogeneous datasets. Moreover, the paper will outline prospective paths for 
future research, elucidating potential synergies between unsupervised techniques 
and other learning paradigms to propel the efficacy and applicability of image 
denoising methodologies in real-world scenarios. 

In essence, this review aims to integrate empirical insights, critical analyses, 
and forward-looking perspectives, offering a comprehensive roadmap for 
researchers, practitioners, and enthusiasts navigating the evolving landscape of 
image denoising through the lens of unsupervised machine learning 
methodologies. 

The introduction includes background problems related to supporting 
theories (literature review) or previous studies (both from journals, as well as 
current phenomena/issues) as the basis for conducting research. The presentation 
of the introductory part that contains the background of the problem, theoretical 
basis, or related research does not have to be subtitled, but is integrated into a 
unified paragraph, and is presented in narrative form. At the end of the 
introduction, the purpose and usefulness of the research results are also explained. 
[Cambria 12, single space] 
 
B. Traditional Image Denoising Methods 

The realm of image denoising has witnessed a rich history of traditional 
methods aimed at restoring images corrupted by various noise sources [20]. 
Spatial filters, including mean [21], median [22][23], and Gaussian [24][25] filters, 
constitute some of the foundational techniques utilized for noise suppression in 
images. These filters operate on the pixel-level information, smoothing out noise 
while preserving image structures to a certain extent [26]. However, their 
simplistic nature often leads to the loss of finer details and edges, resulting in 
blurred or oversmoothed images, especially in scenarios where noise is non-
uniform or complex. 

In [21] proposed an Iterative Mean Filter (IMF) to reduce salt-and-pepper 
noise. In a fixed-size window, IMF utilises the mean of noise-free pixel grey values. 
They evaluate image quality using PSNR, Visual Information Fidelity, Image 
Enhancement Factor, SSIM, and Multiscale Structure Similarity in tests.  
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In [22] proposed a novel speckle noise-distorted image denoising method. 
They show their picture denoising research and explore thresholding methods as 
SureShrink, VisuShrink, and BayesShrink.   

In [23] proposed an adaptive fan rotation median filtering method based on 
the regular median filtering method was presented to maximise image detail for 
better pepper and salt noise reduction. They calculate the grey difference value for 
different areas, judge the correlation between the centre point and different areas 
based on the grey difference value, and output the median value of the highest 
correlation area to restore image details and remove noise. 

 In [24] proposed a new image denoising method using the extended 
difference of Gaussian (DoG) filter and nonlocal low-rank regularisation. To 
improve patch matching, the suggested method uses a unique nonlocal self-
similarity evaluation using the tight frame.   

In [25] proposed an adversarial Gaussian denoiser network that leverages 
generative adversarial network-based adversarial learning for picture denoising. 
The denoiser network is encouraged to identify clear noise-free images instead of 
blurry ones, solving the blurriness problem. 

Wavelet transforms have also been extensively employed in image denoising 
due to their multiresolution analysis capabilities [27][28], [29][29]. Techniques 
such as wavelet shrinkage exploit the sparse representation of images in the 
wavelet domain to suppress noise components while retaining essential image 
features. Despite their ability to preserve edges and textures better than 
conventional filters, wavelet-based approaches may struggle with adaptability to 
varying noise characteristics and the tendency to introduce artifacts in highly 
textured regions. 

In [28] proposed a wavelet transform approach to denoise the image before 
edge identification to increase signal-to-noise ratio and retain edge information. 
This study decomposes, filters, and reconstructs the image using four wavelets' 
functions and four decomposition stages. 

 In [27] suggested a three-stage image denoising CNN using the wavelet 
transform MWDCNN, a dynamic convolutional block (DCB), two cascaded wavelet 
transform and enhancement blocks (WEBs), and a residual block. DCB dynamically 
adjusts multiple convolution parameters to balance denoising performance and 
computational costs. WEB suppresses noise using wavelet modification and 
discriminative learning to recover greater detail in picture denoising. 

In [29] proposed a GAN-based WT domain solution that could handle remote 
sensing image denoising and SR challenges simultaneously using a single network 
topology. The suggested method focuses on wavelet transform-based optical 
remote sensing picture spatial denoising and super-resolution reconstruction. 

Additionally, statistical modeling techniques, such as Bayesian methods [30] 
or non-local means [31], have gained prominence for their ability to exploit 
statistical priors and image self-similarity to enhance denoising performance. 
These methods leverage patch-based approaches, comparing similar patches 
within an image to estimate and reduce noise while preserving fine details. 
However, their computational complexity and sensitivity to parameter tuning pose 
challenges in real-time applications and across diverse image datasets with 
varying noise profiles. 
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In [30] to improve robustness, defined a set of clustering-based latent 
variables (CLV) in Bayesian framework that may be retrieved using clustering 
operators to determine spatial-spectral similarity criteria. 

In [31] the unique denoising method uses Adaptive Non-Local Means (ANL) 
and Method Noise Thresholding (MNT) to improve image quality. Method Noise 
(MN) image is the difference between noisy and pre-filtered image information. 
Some key image components are recovered from the MN using thresholding. These 
computed values are added to pre-filtered images to recover original features. 

 
C. Unsupervised Methods With Image Denoising 

The realm of image denoising has included a numerous of unsupervised 
techniques, harnessing the power of machine learning algorithms to restore image 
reliability within noisy environments. This section explores and dissects the 
operational principles, architectural intricacies, and practical applications of key 
unsupervised methodologies employed in image denoising. 

 
1. Deep Learning with Image Denoising 
In [32] proposed a denoising autoencoders to reduce wall interference and 

reconstitute a ground truth image in open space. By training the algorithm, 
distorted through-wall radar images can be denoised into clean line-of-sight 
images. They used simulated narrowband Doppler-Azimuth images in free space 
and through walls to prove the technique works. 

In [33] proposed a multi-scale denoising convolutional neural network 
(MSDCNN) model to decrease visual noise. Transfer learning improved the model. 
Gaussian noise was added to source datasets before knowledge transfer to target 
datasets.  

In [34] presented a densely connected hierarchical network-based residual 
dense neural network (RDUNet) for picture denoising. The RDUNet's encoding and 
decoding layers use densely linked convolutional layers to reuse feature maps and 
local residual learning to overcome the vanishing gradient problem and speed up 
learning. 

In [35] propose an X-BDCNN blind denoising convolutional neural network 
for low-dose X-ray picture enhancement. Two networks form X-BDCNN. A noise 
estimate is made from the input noise X-ray image. The noisy X-ray image and 
estimated noise level are fed into the other to get the residual noise image. 
Subtracting the residual noise image from the input noise X-ray image yields the 
denoised image. 

In [36] Proposed a parallel generative adversarial network for unsupervised 
real-world picture denoising was proposed as precedent. They also offer a novel 
self-collaboration SC technique to boost denoising performance and self-boost. 

In [37] suggested a convolution neural network-based unsupervised 
multichannel SAR interferometric phase denoising algorithm. It minimizes phase 
noise standard deviation using weighted least-squares (WLS) regularization and 
multichannel interferometric phase covariance to reconstruct TomoSAR accurately 
and completely. 

In [38] suggested an unsupervised deep learning method for removing noise 
from positron emission tomography (PET) images. The patient's previous picture 
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was used as the network input, and the noisy PET image was used as the training 
label. Simulations, PET/CT, and PET/MR datasets show that the proposed 
denoising approach outperforms Gaussian, anatomically guided NLM, BM4D, and 
Deep Decoder. 

In [39] evaluated two unsupervised approaches to denoise Magnetic 
Resonance Image, MRI, one approach based on a Stein’s Unbiased Risk Estimator 
and another one based on a Blindspot network. Both networks were compared 
against Non-Local Means using quantitative and qualitative measures. 

 
2. Machine Learning with Image Denoising 
In [40] suggested a dictionary learning method for clustering-based natural 

image denoising in the wavelet domain (CDLW). This approach uses second-
generation wavelet clustering coefficients in decomposition levels. The suggested 
approach uses second-generation wavelet transform to increase sparsity and 
multiresolution. 

In [41] suggested using total variation and non-local self-similarity to create a 
compressed sensing-based image denoising method dubbed denoising-
compressed sensing by regularization terms (DCSR). The augmented Lagrangian 
optimizes this technique, avoiding the challenging problem of regularization term 
nonlinearity and non-differentiability. 

In [42] suggested an unsupervised learning-based wavelet denoising method. 
Using the wavelet transform's sparsity, multi-resolution structure, and closeness 
to the human visual system, an unsupervised dictionary learning technique is used 
to create a noise reduction dictionary. They learn from the wavelet decomposition 
of the noisy image and use the K-Singular Value Decomposition (K-SVD) method to 
get an adaptive dictionary. 

In [43] proposed that the adversarial loss and cycle-consistency loss are used 
in unsupervised learning to offset the lack of matched data. Unlike the image-
domain cycleGAN, they use wavelet directional learning to denoise without 
compromising high-frequency components like edges and detailed information. 

In [44] suggested a fully unsupervised diffusion probabilistic model to learn 
from noise instead of signal. Adding Gaussian noise to self-fused OCT b-scans 
defines diffusion. A Markov chain-modeled reverse diffusion technique enables 
tunable denoising. 

In [45] suggested an unsupervised denoising framework for super-resolution 
UDSR that applies a distinct denoising network to Real-World Super-Resolution. 
Measurement of the performance of SR and denoising networks showed that the 
combination improves both. 

In [46] presented a more generic strategy for complex noise models. We 
define a denoising solving system using score function, the gradient of logarithmic 
probability. The solution system can denoise noisy photos after estimating the 
score function. 

In [47] proposed a texture-preserving non local denoising algorithm. In the 
proposed algorithm, an adaptive clustering method is designed to adaptively and 
robustly cluster similar patches. A state-of-the-art PCA-based denoising filter is 
proposed in a transform-domain texture variation adaptive filtering approach to 
perform a texture-preserving denoising of each cluster. 
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In [48] propose a novel denoising method for hyperspectral images HSI, 
termed PCASpC, which is based on the theory of PCA transform and adaptive 
sparse coding extended to the transform domain. 

Unsupervised techniques in image denoising, offer diverse avenues for noise 
suppression in images. Each technique exhibits unique strengths, adaptabilities, 
and limitations, underscoring the need for a nuanced understanding of their 
operational principles and applicability across diverse imaging scenarios. See 
Table 1 for a summary about the literature review in details. 

 
Table 1. Summary About The Literature Review on Details 

Ref. Datasets Algorithm 
Evaluation 
Metrics 

Experimental 
results 

Limitations 

[32] Azimuth-Elevation 
Denoising 
Autoencoder. 

NMSE 

Low inaccuracy in 
denoised 
reconstructed 
images compared to 
clear line-of-sight 
photos. 

The technique 
requires huge 
corrupted and 
clean radar 
image training 
databases. 

[23] Not Mentioned  
adaptive fan rotating 
filtering 

MSE 
PSNR 
SSIM 

Noise removal and 
detail recovery are 
superior than other 
methods. 

N/A 

[29] 
UCMERCED, 
NWPU-RESISC45, 
GaoFen-1 

Restoration 
Generative 
Adversarial Network 
with ResNet and 
DenseNet (RRDGAN) 

PSNR 
MSE 
perceptual 
index 

remote sensing 
images' salt & 
pepper noise and 
white gaussian noise 
could be removed 
and spatial 
resolution improved. 

different high 
frequency 
corresponding 
different 
detailed 
information 
cannot be 
distinguished 
well in the 
spatial domain. 

[28] 
Private images for 
bridge in Wenzhou 

wavelet transform 
PSNR 
MSE 

Using wavelet 
transform to 
eliminate noise 
improves edge 
detection 
performance. 

Cannot work on 
colored images 

[27] 
Berkeley 
segmentation 
dataset (BSD) 

multi-stage image 
denoising CNN with 
the wavelet 
transform MWDCNN 

PSNR 
SSIM 

In quantitative and 
qualitative analysis, 
the suggested model 
outperforms popular 
denoising 
approaches. 

it depends on a 
supervised 
manner to train 
a denoising 
model 

[31] 
Standard images of 
Lena, Barbara, and 
Girl face 

Adaptive Non Local 
Means (ANL) along 
with Method Noise 
Thresholding (MNT) 

PSNR 
SSIM 
IQI 

This technique 
works well with 
high-noise, high-
contrast photos. 

N/A 

[25] 
Partial-CelebA 
DIV2K  

adversarial Gaussian 
denoiser network 
(AGDN) 

PSNR 
SSIM 
VIF 
UQI 

This approach 
addresses blurriness 
by directing the 
denoiser network to 
focus on clear, noise-
free images rather 
than blurry ones. 

focuses only on 
additive white 
Gaussian noise 
not real complex 
noise 

[24] 
Brainweb-
simulated 

difference 
of Gaussian 

(DoG) filter and 
nonlocal low-rank 
regularization 

PSNR 
RLNE 
QILV 
SSIM 

The proposed 
technique preserves 
more edges and fine 
features while 
reducing noise. 

N/A 

[22] 
Private ultrasound 
images 

hybrid median filter 
PSNR 
MSE 

The filter effectively 
removes speckle 
noise from medical 
photographs and 
improves their visual 
quality. 

N/A 
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[21] 
IMAGESTEST 
BSDS 

Iterative Mean Filter 
(IMF) 

PSNR 
VIF 
SSIM 
IEF 
MSSIM 

IMF removes noise 
well and preserves 
image structures, 
edges, and features. 

cannot handle 
an extensive 
IMF to remove 
the random-
valued impulse 
noise 

[37] TomoSAR CNN 
MAE 
STD 

Noise and missing 
points were 
efficiently 
suppressed, 
according to the 
results. 

N/A 

[46] 

Kodak 
CBSD68 
CSet9 
DIV2K 
CBSD500 

Score Function PSNR 

The denoising 
performance is 
competitive for 
simple noise models 

and 
excellent for 
complicated ones. 

The denoising 
performance is 
competitive for 
simple noise 
models 

[45] 
NTIRE-2020 Real 

World-SR 
DIV2K 

Unsupervised 
Denoising 
framework for 
Super-Resolution 
(UDSR) 

RMSE 
Perceptual 
Index 
PSNR 
SSIM 
LPIPS 

In many perceptual 
indicators, denoising 
and SR networks 
perform better. 

Due to stability 
issues, training a 
multitasking 
network is 
difficult. 

[44] 
optic nerve head 
(ONH) 

diffusion 
probabilistic 

model 

SNR 
PSNR 
CNR 
ENL 

Results indicate that 
the model effectively 
suppresses speckle. 

This technique 
is limited by its 
Gaussian 
speckle pattern 
assumption. 

[43] 

multispectral 
images from a 
high-resolution 
satellite 

wavelet directional 
cycle-consistent 
adversarial 
network 
(WavCycleGAN) 

PSNR 
SSIM 

Satellite image noise 
is removed and high-
frequency 
characteristics 
preserved using the 
proposed approach. 

For efficient 
noise removal, 
wavelet 
directional 
learning could 
reconstruct just 
directional noise 
pattern 
components. 

[42] 

Standard images of 
Barbara, House, 
Flinstones, Bridge, 
and Fingerprint 

K-Singular Value 
Decomposition (K-
SVD) 

PSNR 
SSIM 
 

They learn over the 
noisy image's 
wavelet 
decomposition to 
create an adaptive 
dictionary. 

N/A 

[36] 
SIDD 
DND 

generative 
adversarial 
networks (GANs) 

PSNR 
SSIM 

They offer a novel 
way to give the 
denoiser self-
boosting power and 
raise performance. 

Each iteration 
requires 
laborious 
manual 
selection of the 
best model 
iteration or 
metric-based 
retraining inside 
the phase. 

[33] 

NaF Prostate 
TCGA-PRAD 
Prostate-3T 
OSTATE-
DIAGNOSIS 

A multi-scale 
denoising 
convolutional neural 
network (MSDCNN) 

k-fold cross 
validation 

Model accuracy 
increased by almost 
10% over previous 
works. 

Images with 
more Gaussian 
noise challenged 
the model. 

[34] DIV2K 
residual dense 
neural network 
(RDUNet) 

PSNR 
SSIM 

Modelling additive 
Gaussian noise does 
not require image 
noise level 
information. 

The suggested 
model requires 
training for each 
noise category. 

[35] ChestX-ray8 

blind denoising 
convolutional 
neural network (X-
BDCNN) 

SNR 
PSNR 

 

The model showed 
that X-BDCNN 
outperformed 
quantitative and 
qualitative quality 

The hybrid 
Poisson-
Gaussian noise 
model may 
differ from the 
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evaluations. low-dose X-ray 
image noise 
model, which is 
hard to 
characterize. 

[40] 
Standard images of 
girl, baboon, couple 
and bark 

clustering-based 
natural image 
denoising using 
dictionary learning 
algorithm in wavelet 
domain (CDLW) 

PSNR 
SSIM 

To demonstrate 
objective and 
subjective 
competitive 
performance, many 
tests were done. 

the proposed 
method has high 
complexity 
computation 

[41] 
Standard images of 
Lena, Barbara, and 
Cameraman 

denoising-
compressed sensing 
by regularization 
(DCSR) 

PSNR 
SSIM 

The algorithm will 
reconstruct and 
denoise images. 

computationally, 
the 
recommended 
approach is not 
the best. 

[38] 
PET/CT  
PET/MR 

DNN CNR 

The proposed 
approach reduces 
noise and restores 
image details. 

N/A 

[47] 
McGill dataset 
USC-SIPI dataset 

PCA-transform-
domain texture 
Variation Adaptive 
filtering for Adaptive 
Clustered patches 
(ACVA) 

PSNR 
SSIM 
FSIM 

This denoising 
method effectively 
preserves texture, 
both visually and 
numerically, 
particularly for 
irregular textures. 

works poorly on 
the real images 
that have 
irregular or 
stochastic 
textures 

[39] Knee MRI 
Stein’s Unbiased 
Risk Estimator 
Blindspot network 

MSE 
PSNR 
SSIM 

Both networks 
outperformed NLM 
in all scoring 
parameters except 
extreme noise. 

N/A 

[48] 
Indian Pines  
dataset 

PCASpC 
PSNR 
SSIM 

The proposed model 
preserves the details 
and alleviates the  
blocking artifacts 
well. 

N/A 

 
 
D. Evaluation Metrics for Unsupervised Denoising 

Evaluating the performance of unsupervised image denoising techniques 
necessitates a comprehensive suite of metrics that can effectively quantify the 
fidelity, perceptual quality, and efficacy of noise suppression in denoised images. 
Robust evaluation metrics play a pivotal role in benchmarking different 
algorithms, guiding parameter tuning, and understanding the trade-offs between 
noise reduction and image fidelity. Widely adopted metrics encompass Peak 
Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSI), Mean Squared 
Error (MSE), and perceptual metrics derived from deep neural networks. 

PSNR, a commonly used metric, quantifies the ratio between the maximum 
possible power of a signal and the power of corrupting noise, providing a measure 
of fidelity between denoised and clean images. However, PSNR fails to capture 
perceptual nuances and may not correlate well with human perception, especially 
in scenarios where high PSNR values do not guarantee visually pleasing denoised 
images [49]. 

SSI, an index measuring the similarity between two images, evaluates the 
structural information preservation in denoised images compared to their clean 
counterparts. SSI accounts for structural variations, edge preservation, and texture 
similarity, offering a more comprehensive assessment of denoising performance 
than PSNR alone [50]. 
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MSE, computed as the average of squared differences between pixel values of 
denoised and clean images, offers a simple yet informative measure of 
reconstruction error. However, MSE's sensitivity to outliers and inability to 
account for human perception limitations necessitate complementing it with other 
perceptual metrics for a holistic evaluation [51]. 

Recent advancements in image quality assessment leverage deep neural 
networks' representations to derive perceptual metrics such as perceptual loss 
functions or feature similarity metrics. These metrics align more closely with 
human perception, capturing higher-level image semantics and perceptual 
differences between denoised and clean images [52]. 

The selection of evaluation metrics should be aligned with the specific 
denoising task and application requirements. A holistic evaluation might involve a 
combination of metrics to comprehensively assess denoising quality, accounting 
for both quantitative measures like PSNR and MSE, as well as more perceptually 
aligned metrics like SSI or those derived from deep neural networks. 

 
E. Challenges and Future Directions  

1. Scalability and Adaptability 
Unsupervised techniques in image denoising often face challenges in 

scalability and adaptability across diverse datasets and noise distributions. 
Algorithms that demonstrate efficacy in controlled settings might falter when 
applied to real-world data with varied noise characteristics. Future research 
endeavors aim to develop scalable and adaptable unsupervised approaches that 
generalize well across diverse imaging scenarios and noise profiles. 

 
2. Robustness to Complex Noise Patterns 
Real-world images often exhibit complex noise patterns, making it 

challenging for unsupervised algorithms to effectively distinguish between noise 
and signal components. Handling non-Gaussian noise distributions, spatially 
variant noise, or mixed noise types remains a significant hurdle. Future directions 
involve exploring robust unsupervised techniques capable of modeling and 
suppressing diverse noise patterns without sacrificing image details or introducing 
artifacts. 

 
3. Integrating Domain Knowledge and Priors 
Incorporating domain-specific knowledge and priors into unsupervised 

denoising frameworks holds promise for improving algorithm performance. 
Hybrid approaches that combine unsupervised learning with domain-specific 
information, such as physics-based models or prior knowledge about imaging 
modalities, can enhance denoising accuracy and robustness. Future research will 
focus on integrating domain knowledge to guide unsupervised algorithms towards 
more effective noise suppression. 

 
4. Real-time and Resource-efficient Algorithms 
Developing resource-efficient and real-time unsupervised denoising 

algorithms is imperative for practical deployment in various applications. Future 
research aims to devise lightweight architectures, efficient training strategies, and 
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algorithms capable of performing denoising tasks in real-time without 
compromising accuracy or quality. 

In conclusion, the field of unsupervised image denoising presents a multitude 
of challenges and opportunities for future research. Addressing these challenges, 
embracing innovative methodologies, and leveraging domain-specific knowledge 
will pave the way for the development of more robust, adaptable, and efficient 
unsupervised techniques in image denoising, ultimately benefiting a wide array of 
applications across diverse domains. 
 
F. Conclusion 

Unsupervised image denoising stands as a dynamic and evolving field, marked 
by remarkable advancements and determined challenges. The review highlights 
the diverse array of unsupervised methodologies, each offering unique strengths 
and challenging distinct limitations. 

Challenges continue in deciphering learned representations, handling complex 
noise patterns, and ensuring scalability and adaptability across varied imaging 
scenarios. Ethical considerations, explain ability, and continual learning are 
emerging focal points, aiming to fortify unsupervised algorithms for real-world 
deployment. 

The future of unsupervised image denoising lies in collaborating domain 
knowledge, mitigating biases, and developing robust, adaptable algorithms capable 
of handling diverse noise distributions. Establishing standardized evaluation 
protocols, assembling benchmark datasets, and integrating supervised techniques 
for hybrid models present avenues for enhancing algorithmic performance and 
generalization. 

As the field advances, bridging the gap between quantitative measures and 
human perception, ensuring ethical deployment, and fostering explainable and 
transparent methodologies will be essential. Addressing these challenges and 
embracing innovative methodologies will chart the course for more effective, 
interpretable, and practical unsupervised image denoising techniques, fostering 
advancements across various domains reliant on clean and accurate image data. 
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