Prediksi Tingkat Kriminalitas Menggunakan Fuzzy Logic

  • Yusli Yenni Universitas Putera Batam
  • Intan Utnasari Universitas Putera Batam
Keywords: fuzzy logic, mamdani, matlab

Abstract

Crime is an act of violation of the law that damages morals and social life in society. The purpose of this study is to predict the level of crime so that the results can be considered by related parties. The decisive factors in predicting crime rates in Batam City are unemployment, age and population. Sources of data were obtained from the statistical center agency and the Batam City Barelang Police. To do the crime rate process, use fuzzy logic with the Mamdani method. The input variable consists of unemployment, age and population, while the output is the crime rate. The stages in the processing are done by the Mamdani fuzzy logic that is determining the formation of the fuzzy set. This study produces prediction of crime in Batam City at position 49.5 which is in the medium range, with a population of 50 as inputted, 60 unemployment, and 50 years of age.

References

[1]B. P. Statistik and K. Batam, “Statistik kesejahteraan rakyat kota batam 2018,” 2018.
[2]D. L. Rahakbauw, L. J. Sinay, and V. Enus, “Aplikasi Metode Fuzzy C-Means Untuk Menentukan Tingkat Pengangguran,” vol. 11, pp. 95–100, 2017.
[3]U. Ismah, “Pengaruh Pengangguran Terhadap Kriminalitas Di Kabupaten Solok,” pengaruh pengangguran terhadap kriminalitas di kabupaten solok, 2015.
[4]Redian Syah Putra, “Kriminalitas Di Kalangan Remaja (Studi Terhadap Remaja Pelaku Pencabulan Di Lembaga Pemasyarakatan Anak Kelas Ii B Pekanbaru),” vol. 3, no. 1, pp. 1–14, 2016.
[5]Dermawanti, A. Hoyyi, and A. Rusgiyono, “Faktor-Faktor Yang Mempengaruhi Kriminalitas Di Kabupaten Batang Tahun 2013 Dengan Analisis Jalur,” vol. 4, no. 1993, pp. 247–256, 2015.
[6]R. MUBARAK, “Sistem Cerdas Berbasis Konsep Fuzzy Logic Untuk Evaluasi Kinerja Karyawan Roy,” vol. XI, no. 02, pp. 36–40, 2017.
[7]S. A. Abbas, “A Comparative Study of Artificial Neural networks and Adaptive Nero- Fuzzy Inference System for Forecasting Daily Discharge of a Tigris River,” A Comp. Study Artif. Neural networks Adapt. Nero- Fuzzy Inference Syst. Forecast. Dly. Disch. a Tigris River Sarmad, vol. 12, no. 9, pp. 1106–1116, 2017.
[8]B. Bachry, “Implementasi Genetic Fuzzy System Untuk Mengidentifikasi Hasil Curian Kendaraan Di Polda Lampung,” vol. 1, no. 1, 2018.
[9]Yulmaini, “Penggunaan Metode Fuzzy Inference System (Fis) Mamdani Dalam Pemilihan Peminatan Mahasiswa,” vol. 15, no. 1, 2015.
[10]J. Prayudha, A. Pranata, and A. Al Hafiz, “Implementasi Metode Fuzzy Logic Untuk Sistem Pengukuran Kualitas Udara Di Kota Medan Berbasis Internet Of Things ( IOT ),” vol. IV, no. 2, 2018.
[11]E. V. Haryanto and F. Nasari, “Penerapan Metode Fuzzy Mamdani Dalam Memprediksi Tingginya Pemakaian Listrik ( Studi Kasus Kelurahan ABC ),” pp. 6–8, 2015.
[12]M. Marbun, H. T. Sihotang, N. V. Marbun, T. Informatika, I. Pendahuluan, and J. B. Medan, “Perancangan sistem perencanaan jumlah produksi roti menggunakan metode fuzzy mamdani,” vol. 20, no. 1, pp. 48–54, 2016.
Published
2019-11-15
How to Cite
Yenni, Y., & Utnasari, I. (2019). Prediksi Tingkat Kriminalitas Menggunakan Fuzzy Logic. Indonesian Journal of Computer Science, 8(2), 164-175. https://doi.org/10.33022/ijcs.v8i2.211
Section
Articles