Penerapan Data Mining Clustering Dalam Mengelompokan Buku Dengan Metode K-Means

Authors

  • Yulia Yulia Universitas Putera Batam

Keywords:

Library; data mining; k-means

Abstract

Library as a means of information and knowledge sources for storing library materials used by users to explore the science of information sources. The study was conducted at one of the libraries in the city of Batam. This library has a diverse collection of books such as general books, scientific works, languages, history, and so forth. The problem that often occurs is that borrowed books are sometimes not available, besides that the library is also experiencing difficulties because they do not know how many books are borrowed so that the Library review records of borrowing transaction books on guest books. For this reason, a system is made by processing large amounts of data using the k-means data mining technique. From the results obtained, the borrowed books that have been processed get the most borrowed books in cluster 1 with 9 items, the least borrowed books are in cluster 2 with 15 items, the most borrowed books are in cluster 0 with 12 items.

References

Y. Yulia and N. Azwanti, “Penerapan Algoritma C4.5 Untuk Memprediksi Besarnya Penggunaan Listrik Rumah Tangga di Kota Batam,” Resti, vol. 2, no. 2, pp. 584–590, 2018.

A. Ikhwan, D. Nofriansyah, and Sriani, “Penerapan Data Mining dengan Algoritma Fp-Growth untuk Mendukung Strategi Promosi Pendidikan (Studi Kasus Kampus STMIK Triguna Dharma),” Saintikom, vol. 14, no. 3, pp. 211–226, 2015.

I. Budiman, “Data Clustering Menggunakan Metodologi Crisp-Dm Untuk Pengenalan Pola Proporsi Pelaksanaan Tridharma,” Semin. Nasioanal Apl. Teknol. Inf. 2012 (SNATI 2012), ISSN 1907-5022, vol. 2012, no. Snati, pp. 15–16, 2012.

M. A. K-means and G. Abdurrahman, “Clustering Data Ujian Tengah Semester ( UTS ) Data Mining,” pp. 71–79, 2006.

P. Assiroj, “Data Mining Dengan Teknik Clustering Menggunakan Algoritma K-Means Pada Data Transaksi Superstore,” no. March 2018, 2017.

E. Bakker and A. O. Penelitian, “Implementasi Data Mining Clustering Data Perpustakaan Menggunakan Algoritma K-Means untuk Menentukan Penambahan Koleksi Buku di Perpustakaan UPY,” pp. 22–25.

M. M. K-means, “Pengelompokan minat baca mahasiswa menggunakan metode k-means,” vol. 8, no. Agustus, pp. 89–94, 2016.

C. Purnamaningsih, R. Saptono, and A. Aziz, “Pemanfaatan Metode K-Means Clustering dalam Penentuan Penjurusan Siswa SMA,” J. Teknol. Inf. ITSmart, vol. 3, no. 1, p. 27, 2016.

M. Simanjuntak, E. Manik, and T. Supratman, “PENERAPAN DATA MINING PENGELOMPOKAN KEJAHATAN ELEKTRONIK SESUAI UU ITE DENGAN MENGGUNAKAN METODE CLUSTERING,” vol. 3, no. 2, 2018.

S. Mulyati, “Penerapan Data Mining Dengan Metode Clustering,” vol. 1, no. Senatkom, pp. 30–35, 2015.

L. Maulida, P. Studi, and M. Informatika, “KUNJUNGAN WISATAWAN KE OBJEK WISATA UNGGULAN DI PROV . DKI JAKARTA DENGAN K-MEANS,” vol. 2, no. 3, pp. 167–174, 2018.

Published

2021-04-30

How to Cite

Yulia, Y. (2021). Penerapan Data Mining Clustering Dalam Mengelompokan Buku Dengan Metode K-Means. Indonesian Journal of Computer Science, 10(1). Retrieved from http://ijcs.stmikindonesia.ac.id/index.php/ijcs/article/view/340

Issue

Section

Articles