Algoritma K-Means Untuk Clustering Rute Perjalanan Wisata Pada Agen Tour & Travel

  • Eni Irfiani Universitas Bina Sarana Informatika
  • Fintri Indriyani Universitas Bina Sarana Informatika
Keywords: clustering, data mining, k-means algorithm, tourist travel routes

Abstract

Government support for the development of tourism has an impact on the growth of business opportunities for travel agents. Along with the advancement of the domestic travel sector, tour & travel agent business forms have sprung up that influence business competition between travel agents. The problem with tour & travel agents is the lack of information about tourist routes that are most in-demand by customers. To solve this problem the method used to classify the most desirable travel routes using the method of data mining is clustering with the K-Means algorithm. Based on the results of the study found three groups of travel routes, namely the most desirable travel routes by 20%, the trips that are in demand by 30% and less desirable trips by 50%.

References

[1] BPS RI, Statistik Wisatawan Nusantara 2018. Jakarta: BPS RI, 2018.
[2] I. N. Y. Setyawan, K. D. B. A. Anggara, I. P. G. K. Styawan, I. G. W. Pramartha, and G. Indrawan, “Pengelompokan Pelanggan Menggunakan Klaster Dinamik Pada Algoritma K-Means Guna Menentukan Paket Wisata Masa Depan,” Pros. SNRT (Seminar Nas. Ris. Ter. Politek. Negeri Banjarmasin, pp. 18–27, 2016.
[3] N. D. Saksono, Y. A. Sari, and R. K. Dewi, “Rekomendasi Lokasi Wisata Kuliner Menggunakan Metode K-Means Clustering Dan Simple Additive Weighting,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 2, no. 10, pp. 3835–3842, 2018.
[4] M. B. Karathiya, R. S. Sakshi, D. S. Sakshi, and D. R. Kathiriya, “Data mining for travels and tourism,” J. Inf. Oper. Manag., vol. 3, no. 1, pp. 114–118, 2012.
[5] P. D. K. P. Fonseka, S. J. Kaluarachchi, D. D. M. Jayaneththi, and T. D. B. S. P. N. Vithana, “Tripper Tourism Management System Using Data Mining,” Int. J. Sci. Res. Publ., vol. 7, no. 7, pp. 374–378, 2017.
[6] N. Iswandhani and M. Muhajir, “K-Means Cluster Analysis of Tourist Destination in Special Region of Yogyakarta using Spatial Approach and Social Network Analysis (a case study : post of @ explorejogja instagram account in 2016),” in International Conference on Mathematics: Pure, Applied and Computation, 2018, pp. 1–8.
[7] R. W. Sari and D. Hartama, “Data Mining: Algoritma K-Means Pada Pengelompokkan Wisata Asing ke Indonesia Menurut Provinsi,” in Seminar Nasional Sains & Teknologi Informasi (SENSASI), 2018, pp. 322–326.
[8] J. O. Ong, “Implementasi Algoritma K-Means Clustering Untuk Menentukan Strategi Marketing,” J. Ilm. Tek. Ind., vol. 12, no. 1, pp. 10–20, 2013.
[9] A. Bastian, H. Sujadi, and G. Febrianto, “Penerapan Algoritma K-Means Clustering Analysis Pada Penyakit Menular Manusia (Studi Kasus Kabupaten Majalengka),” Sist. Inf., vol. 1, no. 14, pp. 26–32, 2018.
[10] S. Agrawal, S. Vishwakarma, K, and A. Sharma, K, “Using Data Mining Classifier for Predicting Student ’ s Performance in UG Level,” Int. J. Comput. Appl., vol. 172, no. 8, pp. 39–44, 2017.
[11] P. Juwattanasamran, S. Supattranuwong, and S. Sinthupinyo, “Applying Data Mining to Analyze Travel Pattern in Searching Travel Destination Choices,” Int. J. Eng. Sci., vol. 2, no. 4, pp. 38–44, 2013.
[12] V. Mangla, C. Sarda, and T. Nadu, “Improving the efficiency of Apriori Algorithm in Data Mining,” Int. J. Sci. Eng. Technol., vol. 3, no. 3, pp. 393–396, 2013.
[13] J. Han and M. Kamber, Data Mining Concepts and technique, Third Edit. United States of America: Elsevier, 2012.
[14] Z. Arifin, Penelitian Pendidikan. Bandung: PT. Remaja Rosdakarya, 2012.
Published
2020-04-10
How to Cite
Irfiani, E., & Indriyani, F. (2020). Algoritma K-Means Untuk Clustering Rute Perjalanan Wisata Pada Agen Tour & Travel. Indonesian Journal of Computer Science, 9(1), 44-52. https://doi.org/10.33022/ijcs.v9i1.244
Section
Articles